# 早良区小田部地区における地下水水銀汚染

# 宮原正太郎<sup>1</sup>・谷口千歳<sup>2</sup> 廣田敏郎<sup>1</sup>・木下誠<sup>1</sup>・吉武和人<sup>3</sup>

# Underground water pollution by Hg in Kotabe

# Shotaro MIYAHARA, Chitose TANIGUCHI, Toshiro HIROTA Makoto KINOSHITA and Kazuto YOSHITAKE

## 要旨

2001 年 8 月、福岡市早良区小田部地区において、地下水が水銀に汚染されていることが判明した。 2001 年 12 月までの調査地下水 181 件中、30 件が地下水の水質汚濁に係る環境基準を超えて検出さ れた。汚染の範囲は、小田部地区に限定されており、地質や周辺の状況、各種の調査結果から汚染 は、人為的なものではなく自然由来と推定された。

Key Words: 水銀 Hg, Mercury, 地下水 Underground water, 花崗岩 Granite 自然由来 Origin from nature, 小田部 Kotabe

# はじめに

2001 年 8 月、小田部地区の住民より環境局に地下水 が水銀汚染の恐れがあるとの通報があった。このため、 環境局で 8 月 3 日に採水し、本所で検査したところ、 8 件の地下水のうち 6 件が地下水の水質汚濁に係る環境基 準(総水銀 0.0005mg/L 以下)を越えて検出された。 その後、2001 年 12 月までの間、汚染地区周辺の地下水 調査および自主的に保健所に持ち込まれた地下水の検査 等のなかで、173 件の地下水のうち 24 件の基準超過が あった。水質試験のほか、さらに、土壌の水銀含有量試 験、水銀蒸気検出試験等の追跡調査を実施したが、この 水銀汚染は、小田部地区内だけであった

本市では、過去に南区の老司地区 1)、博多区の御笠 川中流域における水銀地下水汚染事例 2)をもっている が、今回の汚染メカニズムも過去の事例と同様の可能性 が高いと考えられ、人為によるものでなく自然に由来す るものであると想定された。

3 福岡市環境局指導部環境保全課

## 試 験 方 法

## 1.地下水

地下水中の水銀分析は、JIS K0102 の 66.1.1 還元気化 原子吸光法により、日本インスツルメンツ社製マーキュ リー SP-3D を使用して行った。

有機水銀分析は、HP 社製ガスクロマトグラフィー HP6890 及び日本電子社製マススペクトロメーター AUTOMASS SUNを用いて行った。

イオン分析については、HCO<sup>5</sup> は島津社製 TOC 分析 装置 TOC-5000A を用い、他のカチオン・アニオンは Dionex 社製イオンクロマトグラフィーで測定した。

## 2.土壌の含有量試験

ボーリングコア試料中の水銀含有量を加熱気化原子吸 光法により日本インスツルメンツ社製マーキュリー SP-3Dを使用して測定した。

3. 水銀蒸気検出試験(金線試験)

土中に径5 cm、深さ50 cm の穴を穿孔し、5 cm の 金線を7日間吊り下げた後、回収した。金線にアマルガ ムとして捕集された水銀を、含有量試験と同じ測定機器 を用いて加熱気化原子吸光法で測定した。

<sup>1</sup> 福岡市保健環境研究所環境科学部門

<sup>2</sup> 福岡市早良区保健福祉センター衛生課

### 調査結果と考察

2001年8月から数回にわたり実施された小田部地区の 地下水調査、汚染地区周辺調査および自主的に保健所に 持ち込まれた地下水の検査を通じ、検査した総地下水数 は181 であり、水銀がその内の30 井戸から地下水の環 境基準を超えて検出された。調査地区の中心である小田 部地区の位置を図-1 に示した。

表 - 1 に水銀が検出された 30 井戸を掲げたが、濃度 範囲は、0.0006 ~ 0.020mg/L であった。この最高濃度は、 過去の御笠川中流域での 0.026mg/L、南区老司での 0.018mg/L と同程度であった。

また、有機水銀の分析をしたところ、有機態の水銀は 検出されず、水銀の形態としては、無機態の水銀と考え られた。

## 1.地区別の検出状況

調査は、小田部地区を中心に南庄、原、有田、福重、 早良地区等についても行い、検出状況を表 - 2 に表した が、基準超過井戸の出現は小田部地区内だけであった。

表 1 汚染井戸



| <u>No 地区</u>     | 井戸深さ(៣) | <u>水温() pH</u> |     | ORP(mV)E          | C(uS/cm) | <u>にイオン</u> | <u> 7K銀(m a/ l</u> | 備考 |
|------------------|---------|----------------|-----|-------------------|----------|-------------|--------------------|----|
| 1 小田部1-10        | 44      | 24             | 6.5 | <u><u></u>115</u> | 490      | 73          | 0.0025             | 併用 |
| <u>2 小田部1-11</u> | 30      | 20.5           | 6.0 |                   | 440      | 76          | 0.0010             | 雑用 |
| <u>3 小田部1-16</u> | 50      | 19.5           | 6.0 | 252               | 270      | 38          | 0.0024             | 併用 |
| <u>4 小田部1-16</u> | 30      | 20.1           | 5.8 | 296               | 400      | 65          | 0.0009             | 併用 |
| 5 小田部1-19        | 30      | 18.4           | 6.0 |                   | 340      | 50          | 0.0010             | 併用 |
| <u>6 小田部1-20</u> |         | 17.5           | 5.9 | 322               | 340      | 43          | 0.0058             | 併用 |
| <u>7 小田部1-33</u> | 30      | 20             | 5.9 | 297               | 240      | 25          | 0.0019             | 雑用 |
| <u>8 小田部1-33</u> | 25      | 18.5           | 6.0 | 310               | 250      | 32          | 0.0007             | 併用 |
| 9 小田部1-34        | 30      | 19             | 6.0 | 311               | 270      | 25          | 0.0006             | 飲用 |
| 10 小田部2-12       | 20      | 19.4           | 62  | 201               | 420      | 44          | 8000.0             | 雑用 |
| <u>11 小田部3-5</u> | 40      | 16.5           | 6.4 |                   | 380      | 50          | 0.0006             | 雑用 |
| <u>12 小田部3-7</u> | 40      | 16.7           | 63  | 241               | 490      | 80          | 0.0015             | 雑用 |
| 13 小田部3-8        | 45      | 16.4           | 6.1 | 235               | 360      | 66          | 0.0006             | 併用 |
| <u>14 小田部3-9</u> | 40      |                | 63  |                   | 440      | 88          | 0.0018             | 雑用 |
| 15 小田部3-15       | 30      | 16.3           | 63  | 215               | 420      | 39          | 0.0200             | 併用 |
| 16 小田部3-31       | 6       | 15.5           | 6.1 |                   | 300      | 29          | 0.0006             | 雑用 |
| 17 小田部4-6        | 30      |                | 6.4 |                   | 440      | 67          | 0.0032             | 併用 |
| 18 小田部4-6        | 30      | 19.3           | 65  | 248               | 320      | 47          | 0.0006             | 併用 |
| 19 小田部4-7        | 35      |                | 6.4 |                   | 440      | 48          | 0.0006             | 飲用 |
| 20 小田部5-3        |         |                | 6.4 |                   | 390      | 34          | 0.0020             | 併用 |
| 21 小田部5-9        | 40      | 22.3           | 62  |                   | 350      | 69          | 0.0015             | 雑用 |
| 22 小田部5-12       | 40      | 21.5           | 62  | 292               | 350      | 46          | 0.0044             | 併用 |
| 23 小田部5-12       | 40      | 19.8           | 6.0 | 294               | 330      | 49          | 0.0018             | 飲用 |
| 24 小田部5-13       | 6       | 17             | 63  | 235               | 270      | 30          | 0.0054             | 雑用 |
|                  | 35      | 19.6           | 63  | 238               | 340      | 59          | 0.0011             | 雑用 |
| 26 小田部5-14       | 30      | 18.2           | 6.4 | 233               | 330      | 40          | 0.0006             | 併用 |
| 27 小田部5-15       | 30      | 15.5           | 6.3 | 218               | 450      | 35          | 0.0120             | 飲用 |
| 28 小田部5-16       | 50      | 20             | 6.4 |                   | 320      | 49          | 0.0006             | 飲用 |
| 29 小田部5-22       | 104     |                | 6.4 |                   | 1400     | 350         | 0.0023             | 雑用 |
| 30 小田部7-2        | 30      | 19.9           | 6.8 |                   | 260      | 22          | 8000.0             | 併用 |

# 表 - 2 地区別検出状況

| 地区名    | 調査井戸 | 基準超過井戸 |
|--------|------|--------|
| 小田部    | 126  | 30     |
| 有田     | 15   | 0      |
| 福重     | 8    | 0      |
| <br>早良 | 7    | 0      |
| 原・南庄他  | 25   | 0      |
| 総計     | 181  | 30     |

## 2.汚染の範囲

検査井戸を図-2 に示した。 印で水銀不検出井戸を、 印で基準超過井戸を表した。濃度的には、小田部5丁

目、3丁目、1丁目に比較的高濃度の井戸が位置してい た。



### 図 - 2 検査井戸 基準超過 水銀不検出

#### 3.水質との関連

水質と水銀濃度の関係は、図-3のトリリニアキーダ イアグラムに示した。検出・不検出に拘わらず、水質は、

型の浅層地下水の一般的な水質を示していた。

井戸の水深との関連を見ると表 - 1 に示すように 6 m の浅井戸 2 つを除けば、 2 0 m以深の深井戸であり、特 に水銀濃度が高い井戸の水深は、 3 0 m以上であった。

水質の項目間と水銀濃度との相関を見ると、水温・Mg イオン・重炭酸イオンと水銀濃度の間で弱い相関が見ら れた。水温については、御笠川中流域で認められた関係 とは異なったもので、水銀濃度が高い地下水ほど水温が 低い傾向にあった。(図 - 4、表 - 3)







# 図-4 水温と水銀濃度

### 表-3 水銀濃度との相関

|       |      |      |         | 5%水凖 =  | .182   |
|-------|------|------|---------|---------|--------|
|       |      |      |         | 1%水準 =  | 238    |
|       | 井戸深さ | 水温   | 電気伝導率   | рН      | Нg     |
| 井戸深さ  | 1    | 0387 | 0 2 3 2 | 0 0 5 7 | -0.097 |
| 水温    |      | 1    | 0275    | -0.005  | -0307  |
| 電気伝導率 |      |      | 1       | 0212    | 0.126  |
| рΗ    |      |      |         | 1       | 0046   |
| Нg    |      |      |         |         | 1      |

### 4.地質との関連

小田部地区は福岡平野の北部、室見川の下流域に位置 する。この地区の地質は、図 - 5・6に示すように中生 代の早良花崗岩を基盤として、その上を更新世の須崎層 および阿蘇火砕流堆積物が覆う構造 4)となっている。 特に、小田部地区は、図 - 6の断面図に見るように7~ 8mの阿蘇火砕流堆積物が表層を掩蓋している。この阿 蘇火砕流堆積物の広がりを縮尺を調整して図 - 2にオー バーレイしたものを図 - 7 に示した。火砕流堆積物の外 縁を太いハーフトーンの線で表しているが、水銀検出井 戸はすべてこの線の内部に位置しており、小田部地区そ のものもほとんどがこの線内に包含されている。このこ とから、火砕流堆積物が何らかの関与をして、地下水の 水銀濃度を助長していることが示唆された。



図 - 5 表層地質図 凡例 埋立地 箱崎砂層 住吉層 大坪砂礫層 阿蘇火砕流堆積物 須崎層 仲原礫層





図 - 7 検出井戸と地質の関係

5.土壌の含有量試験

図 - 7の小田部地区中央部やや上部に位置するM地点 でのボーリングコアである残置土について、水銀含有量、 性状、乾燥減量、強熱減量の試験を行った(表 - 4)。

図 - 8 にコア採取時のボーリング柱状図を表したが、 層序は、図 - 6 を裏書きするもので表土から 8 mほどが 阿蘇火砕流堆積物、それ以深が風化花崗岩となっていた。 水銀含有量は、 - 8 m付近の層序移行帯での含有量が他 の層に比較して突出して多かった。しかしながらこの含 有量は、他の汚染地区の土壌や一般土壌に比較してやや 低値であった。

# 表 - 4 コアの水銀含有量

| 試料 No | 乾燥減量(%) | 水銀含有量(mg/kg) |
|-------|---------|--------------|
| 3     | 46.3    | 0.0003       |
| 5     | 48.5    | 0.0004       |
| 6     | 37.2    | 0.0001       |
| 9     | 18.5    | 0.032        |
| 13    | 8.8     | 0.0010       |
| 17    | 2.3     | 0.0010       |



図 - 8 コア柱状図



#### 6. 水銀蒸気検出試験

小田部地区内16箇所に設置した金線のうち10本か ら水銀が検出された。検出状況を図-9に示したが、最 高捕集量は15ng/7日であり、過去の事例に比して高い 値であった。地下の深部から上昇してきた水銀蒸気が経 路に当たる地下水を汚染するというメカニズムが想定さ れるが、水銀蒸気検出濃度の高い地域は、小田部5丁目 を中心に北ないし北東部に広がっており、地下水の水銀 濃度の分布状況とはやや異なる傾向を見せた。

# まとめ

早良区小田部地区において地下水が水銀に汚染された 事例があった。本所で総数 181 件の検査したところ、30 件の地下水が地下水の環境基準を越えて検出された。 水銀汚染の範囲は小田部地区内だけであった。

水質と水銀濃度の関連については、弱い相関がいくつ かの項目間にあったが、強い相関は、認められなかった。

表層地質とボーリングコア試験の結果から、水銀汚染 には地質構造が大きく関連していることが推察された。

金線試験による水銀蒸気分布と地下水の水銀濃度の分 布状況とはやや異なっていた。

各種試験の結果、過去の類似事例及び地質構造等から 考え、汚染のメカニズムは、人為によるものでなく自然 に由来するものであると推定された。

#### 謝 辞

調査を行うに当たり、貴重な指導・助言を賜った「福 岡市地下水汚染対策委員会」の九州大学井上尚英教授、 島田允堯教授、神野健二教授、福岡大学松藤康司教授に 深謝いたします。

#### 文 献

中牟田啓子、木下誠他:金属水銀による地下水汚染機構の解明、水環境学会誌、21、875-878、1998
2)福岡市:福岡市南区地下水水銀汚染原因究明等調査報告書、29-35、1998
3)福岡県・福岡市:福岡市及び大野城市における地下水水銀汚染原因等調査報告書、47-49、1998

4)地質調査所: 福岡地域の地質, 116・122・127, 1994