平成 28 年度 新西部水処理センター 環境監視結果(案)

平成 29 年 3 月

福岡市道路下水道局

~目 次~

1	環境監視の目的・・・・・・・・・・・・・・・・・・・・・・
2	環境監視の体制と役割・・・・・・・・・・・・・・・・・
3	事業内容 ・・・・・・・・・・・・・・・・・・・・ 2
	1. これまでの経緯と今後の事業計画 ・・・・・・・・・・ 2
	2. 施設整備計画/施設運転計画 ・・・・・・・・・・・・・・ 3
4	環境監視結果・・・・・・・・・・・・・・・・・・・・・・・・・・・
	環境監視項目1:処理水質・・・・・・・・・・・・・・・・・
	環境監視項目2:放流河川水質・・・・・・・・・・・・・13
	環境監視項目3:臭気 ・・・・・・・・・・・・・・・・22
	環境監視項目4:今津干潟および周辺の水環境 ・・・・・・・・・24
	環境監視項目5:今津干潟および周辺の底質・・・・・・・・・・・46
	環境監視項目6:今津干潟および周辺の生態系・・・・・・・・・51
	環境監視項目7:今津干潟および周辺の貴重な生物・・・・・・・・83

1 環境監視の目的

環境監視を実施することにより、

- 1)対象事業(新西部水処理センターの稼働)による影響が予測範囲内であるかを把握すること
- 2) 環境影響評価により検討した環境保全措置が十分に機能し効果を示しているかを把握すること 予測結果を上回る著しい環境影響が確認された場合には、
- 3) 環境保全措置の追加・再検討等を行うこと

2 環境監視の体制と役割

事業者(福岡市道路下水道局)

- 1) 新西部水処理センターの適正な運用と保全対策の実施
- 2) 環境監視計画の策定
- 3) 環境監視調査の実施、および環境監視調査結果の評価

委員会

- ・新西部水処理センター環境モニタリング委員会設置要綱第3条により、「委員会は次の事項について指導、助言を行う。」
 - 1)環境監視計画の策定に関すること
 - 2) 環境監視結果の評価に関すること
 - 3)上記の評価を踏まえた対策等に関すること

3 事業内容

1. これまでの経緯

事業計画策定と環境影響評価の実施

平成9年~10年 水処理センター環境検討委員会

(環境影響評価:現地調査結果、予測・評価項目、環境影響評価結果について)

平成10年 (自主アセスによる)新西部水処理センター環境影響評価書

平成 11 年 7 月 都市計画決定 平成 11 年 10 月 下水道法事業認可

建設工事

第1期工事

平成 21 年 3 月~24 年 3 月 土木工事 平成 23 年 12 月~25 年 3 月 建築工事

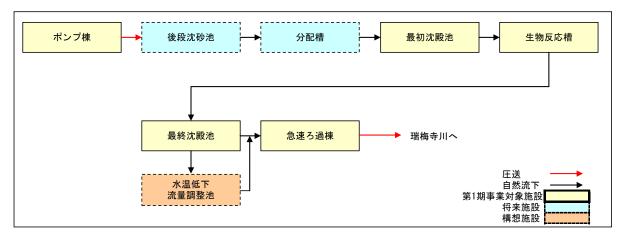
平成24年度~25年度 機械設備工事、電気設備工事

施設稼働

平成26年3月 第1系列供用開始

新西部水処理センターおよび放流先の位置

2. 施設概要


名称:福岡市新西部水処理センター(以下、新西部 TC)

位置:福岡県福岡市西区大字田尻 2149 番地

排除方式:分流式

水処理方式: 凝集剤併用型ステップ流入式 3 段硝化脱窒法+砂ろ過 汚泥処理方式: 濃縮→(消化)→(脱水)* ※括弧内は将来計画

処理能力:計画1日最大汚水量15,400m³/日(全体77,000 m³/日の1/5系列)

施設構成

- ・水処理は凝集剤併用型ステップ流入式3段硝化脱窒法で、生物反応槽末端でPACを添加した後、急速ろ過後、紫外線滅菌し、瑞梅寺川へ放流する。
- ・発生汚泥は場内で機械濃縮後、西部水処理センターへタンクローリーで運んで処理する。

項目	計画流入水質 (mg/L)	計画処理水質 (mg/L)	計画放流水質 (下水道法事業認可) (mg/L)
BOD	180	3	15
COD_{Mn}	90	10(8)	_
SS	170	5	_
T-N	40	9	20

0.4

新西部水処理センターの計画水質等

4.5

T-P

注) COD_{Mn}の計画処理水質は暫定目標値(カッコ内が目標値)である。

4 環境監視結果

環境監視項目 1: 処理水質

調査の目的

・水処理センターから河川へ放流される処理水(放流水)の水質が、適正に管理されていることを確かめる。

保全対策

・凝集剤併用型ステップ流入式3段硝化脱室法による高度処理、砂ろ過

調査期間

・処理水が発生する供用後とする。

調查項目

- 処理水質
- ①評価項目は、遵守すべき基準(排水基準)が設定されている一般項目及び有害物質項目とした。 一般項目 BOD、SS、窒素含有量、りん含有量

有害物質:カドミウム及びその化合物、シアン化合物、鉛及びその化合物、六価クロム化合物、 ヒ素及びその化合物、水銀及びアルキル水銀その他水銀化合物、フェノール類含有量、 銅含有量、亜鉛含有量、溶解性鉄含有量、溶解性マンガン含有量、クロム含有量、 ふっ素及びその化合物、ポリ塩化ビフェニル(PCB)、アルキル水銀化合物、 セレン及びその化合物、ほう素及びその化合物、有機りん化合物、トリクロロエチレン、 テトラクロロエチレン、ジクロロメタン、四塩化炭素、1,2-ジクロロエタン、1,1-ジクロロエチレン、 シス-1,2-ジクロロエチレン、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、 1,3-ジクロロプロペン、チウラム、シマジン、チオベンカルブ、ベンゼン、1,4-ジオキサン

②参考項目は、水温*1、ATU-BOD、COD_{Mn}、DO*1、NH₄-N、NO₂-N、NO₃-N、PO₄-P、TOC、 塩化物イオン*1、大腸菌群数、流入量・放流量*1とした。

※1 日常試験項目。

調査方法

- ・調査対象:場内の処理水
- •調査時期:運転期間中(通年)
- ・分析方法または測定方法、調査頻度、調査日:下表のとおり

(評価項目)

一般項目

分析項目	分析方法	調査頻度	調査日
BOD	JIS K 0102 -2013- 21	月2回	平成 28 年
	隔膜電極法•直接希釈法		4月6日、20日、
SS	昭和 46 年環境庁告示第 59 号 付表 9		5月11日、18日、
窒素含有量	JIS K 0102 -2013- 45.4		6月1日、15日、
	銅・カドミウムカラム還元法 準拠		7月6日、16日、
りん含有量	JIS K 0102 -2013- 46.3.1		8月3日、17日、
	ペルオキソニ硫酸カリウム分解法 準拠		9月1日、15日、
			10月6日、月19日、
			11月9日、16日、
			12月7日、21日、
			平成 29 年
			1月5日、18日、
			2月1日、15日、
			3月1日、16日

有害物質			
分析項目	分析方法	調査頻度	調査日
カドミウム及びその化合物	JIS K 0102 -2013- 55.4 ICP 質量分析法	月1回	平成 28 年
シアン化合物	JIS K 0102 -2013- 38.1.2 全シアン		4月6日、5月11日
	JIS K 0102 –2013– 38.3		6月1日、7月6日
	4-ピリジンカルボン酸-ピラゾロン吸光光度法		8月3日、9月1日
鉛及びその化合物	JIS K 0102 -2013- 54.4 ICP 質量分析法		10月6日、11月9日
六価クロム化合物	JIS K 0102 -2013- 65.2.5 ICP 質量分析法		12月7日、
ヒ素及びその化合物	JIS K 0102 -2013- 61.4 ICP 質量分析法		平成 29 年
水銀及びアルキル水銀	JIS K 0102 –2013– 66.1.1		1月5日、2月1日、
その他水銀化合物	還元気化原子吸光法		3月1日
フェノール類含有量	JIS K 0102 –2013– 28.1.2		
	4-アミノアンチピリン吸光光度法		
銅含有量	JIS K 0102 -2013- 52.5 ICP 質量分析法		
亜鉛含有量	JIS K 0102 -2013- 53.4 ICP 質量分析法		
溶解性鉄含有量	JIS K 0102 –2013– 57.1		
	フェナントロリン吸光光度法		
	平成 15 年厚生労働省告示第 261 号		
	別表第 6 ICP質量分析法 準拠		
溶解性マンガン含有量	JIS K 0102 -2013- 56.5 ICP 質量分析法		
クロム含有量	JIS K 0102 -2013- 65.1.5 ICP 質量分析法		
ふっ素及びその化合物	JIS K 0102 –2013– 34.1		
	ランタン-アリザリンコンプレキソン吸光光度法		
セレン及びその化合物	JIS K 0102 -2013- 67.4 ICP 質量分析法		
ほう素及びその化合物	JIS K 0102 -2013- 47.4 ICP 質量分析法		
アルキル水銀化合物	昭和 46 年環境庁告示第 59 号 付表 2 準拠		
ポリ塩化ビフェニル(PCB)	JIS K 0093 –2006–	3ヶ月に	平成 28 年
	ガスクロマトグラフ質量分析法 準拠	1 回	5月11日、8月3日、
有機りん化合物	平成 17 年厚生労働省 健水発第 1101001 号		11月9日、
	別添 18 準拠 (固相抽出-LC-MS 法)		平成 29 年
トリクロロエチレン			2月1日
テトラクロロエチレン			
ジクロロメタン			
四塩化炭素			
1,2-ジクロロエタン	JIS K 0125 -1995- 5.2		
1,1-ジクロロエチレン	ヘッドスペース-ガスクロマトグラフ質量分析法		
シス-1,2-ジクロロエチレン			
1,1,1-トリクロロエタン			
1,1,2-トリクロロエタン	-		
1,3-ジクロロプロペン	1		
チウラム	平成 17 年厚生労働省 健水発第 1101001 号		
	別添 18 準拠 (固相抽出-LC-MS 法)		
	昭和 46 年環境庁告示第 59 号 付表 4 準拠		
	(固相抽出-HPLC 法)		

分析項目	分析方法	調査頻度	調査日
シマジン	平成 17 年厚生労働省 健水発第 1101001 号	3ヶ月に	平成 28 年
	別添 18 準拠 (固相抽出-LC-MS 法)	1回	5月11日、8月3日、
チオベンカルブ	平成 17 年厚生労働省 健水発第 1101001 号		11月9日、
	別添 18 準拠 (固相抽出-LC-MS 法)		平成 29 年
ベンゼン	JIS K 0125 –1995– 5.2		2月1日
	ヘッドスペース-ガスクロマトグラフ質量分析法		
1,4-ジオキサン	昭和 46 年環境庁告示第 59 号 付表 7		
	1,4-ジオキサンの測定方法		

(参考項目)

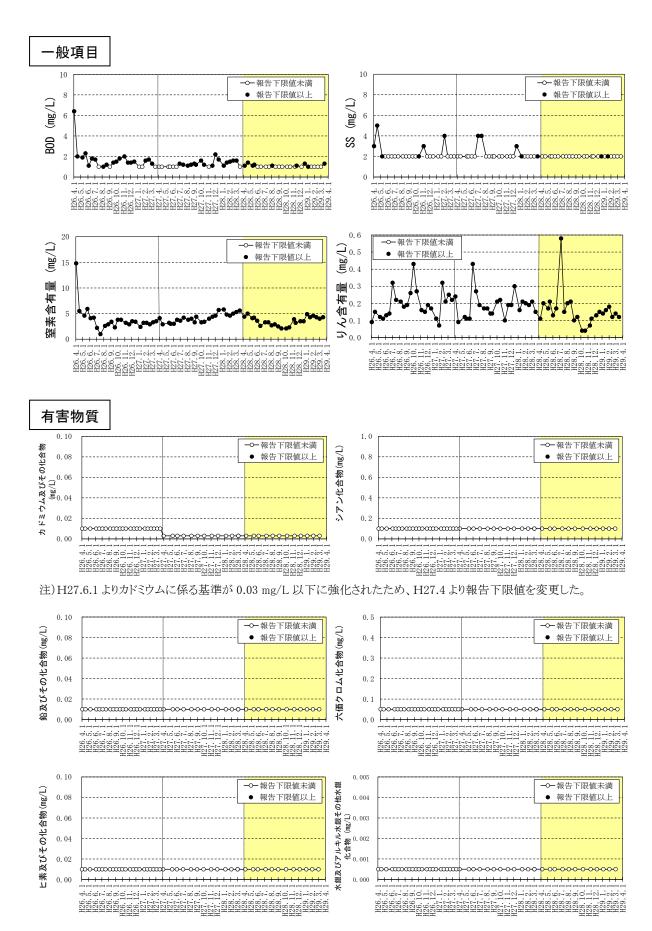
分析項目または測定項目	分析方法または測定方法	調査頻度	調査日
水温	JIS K 0102 -2013- 7.2	原則毎日	原則毎日
DO	JIS K 0102 −2013− 32.3 隔膜電極法		
塩化物イオン	下水試験方法 2.1.31.1.(1) 硝酸銀滴定法		
	下水試験方法 2.1.31.2 イオン電極法		
ATU-BOD	JIS K 0102 -2013- 21 備考 1	月2回	平成 28 年
	N-(2-プロペニル)チオ尿素添加法		4月6日、20日、
COD_{Mn}	JIS K 0102 -2013- 17		5月11日、18日、
NH ₄ -N	JIS K 0102 -2013- 42.2		6月1日、15日、
	インドフェノール青吸光光度法 準拠		7月6日、16日、
NO ₂ -N	JIS K 0102 -2013- 43.1.1		8月3日、17日、
	ナフチルエチレンジアミン吸光光度法 準拠		9月1日、15日
NO ₃ -N	JIS K 0102 -2013- 43.2.3		10月6日、19日
	銅・カドミウムカラム還元ナフチルエチレン		11月9日、16日
	ジアミン吸光光度法 準拠		12月7日、21日、
	JIS K 0102 -2013- 45.4		平成 29 年
	銅・カドミウムカラム還元法 準拠		1月5日、18日、
PO ₄ -P	JIS K 0102 -2013- 46.1.1		2月1日、15日、
	モリブデン青吸光光度法 準拠		3月1日、16日
TOC	JIS K 0102 -2013- 22.1		
	燃焼酸化-赤外線式 TOC分析法		
大腸菌群数	下水の水質の検定方法に関する省令(昭和37		
	年厚生省:建設省令第1号)別表第1		
流入量	ポンプ揚水量(主ポンプ〜分配槽)を電磁流	原則毎日	原則毎日
	量計で測定		
放流量	ポンプ放流量(放流ポンプ~サージタンク)を		
	電磁流量計で測定		

調査結果のとりまとめ方法

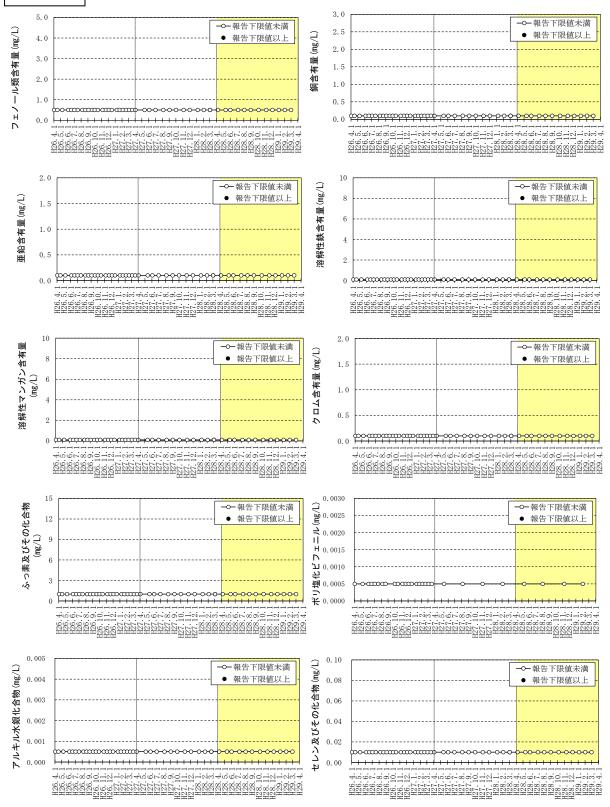
・処理水質、流入量、放流量の経時変化を整理し、処理水質を排水基準と比較し、評価した。

調査結果

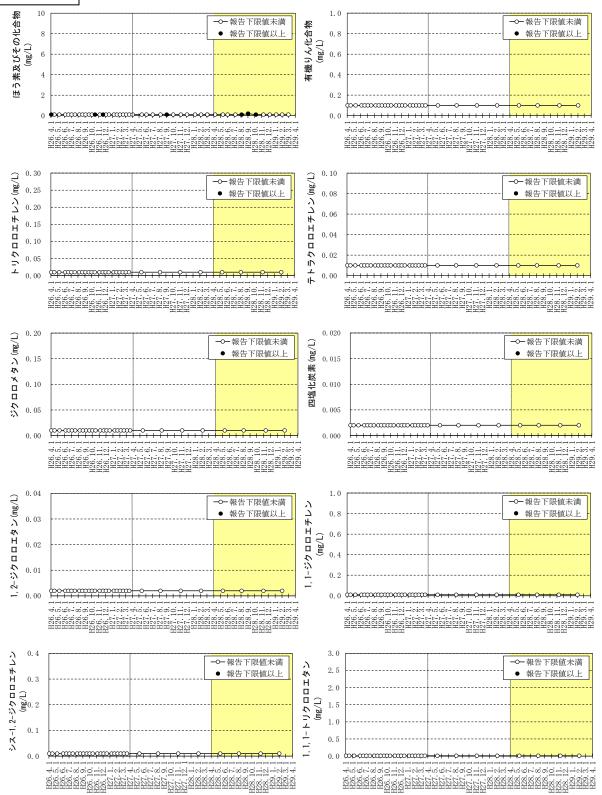
・いずれの月も、全ての項目において排水基準を満たしている。

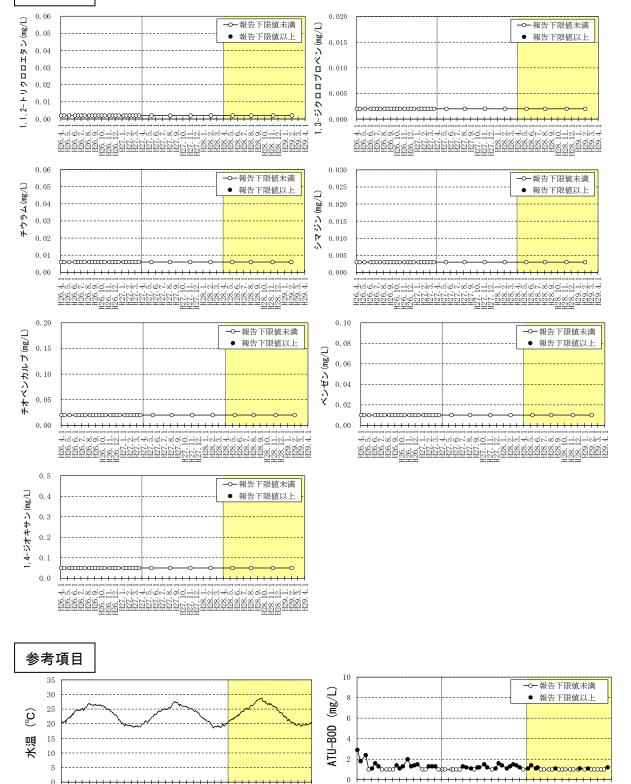

排水基準と処理水質等との比較

	排水基準と処埋水質等との比較								
	項目	単位	ī 排水基準			備考			
An act to	***			H26∼H27	H28	S			
一般項目	BOD	mg/L	15**1	<1.0∼6.4	<1.0∼1.4				
	SS	mg/L	40 ^{**1}	<2∼5	<2∼2				
	<u>窒素含有量</u>	mg/L	20*1	1.0~14.8	2.1~5.0				
1 1 1 1 1	りん含有量	mg/L	3*1	0.07~0.43	0.04~0.58				
有害物質	カドミウム及びその化合物	mg/L	0.03 [*] 2	<0.003~<0.01	<0.003				
	シアン化合物	mg/L	1	<0.1	<0.1				
	鉛及びその化合物	mg/L	0.1	<0.01	<0.01				
	六価クロム化合物	mg/L	0.5	<0.05	<0.05				
	ヒ素及びその化合物	mg/L	0.1	<0.01	<0.01				
	水銀及びアルキル水銀その他水銀化合物	mg/L	0.005	<0.0005	<0.0005				
	フェノール類含有量	mg/L	5	<0.5	<0.5				
	銅含有量	mg/L	3	<0.1	<0.1				
	亜鉛含有量	mg/L	2	<0.1	<0.1				
	溶解性鉄含有量	mg/L	10	<0.1	<0.1				
	溶解性マンガン含有量	mg/L	10	<0.1	<0.1				
	クロム含有量	mg/L	2	<0.1	<0.1				
	ふっ素及びその化合物	mg/L	8	<1.0	<1.0				
	ポリ塩化ビフェニル(PCB)	mg/L	0.003	<0.0005	<0.0005				
	アルキル水銀化合物	mg/L	検出されないこと	ND ^{₩3}	<0.0005				
	セレン及びその化合物	mg/L	0.1	<0.01	<0.01				
	ほう素及びその化合物	mg/L	10	<0.1∼0.1	<0.1∼0.2				
	有機りん化合物	mg/L	1	<0.1	<0.1				
	トリクロロエチレン	mg/L	0. 1 ^{**4}	<0.01	<0.01				
	テトラクロロエチレン	mg/L	0. 1	<0.01	<0.01				
	ジクロロメタン	mg/L	0.2	<0.01	<0.01				
	四塩化炭素	mg/L	0.02	<0.002	<0.002				
	1,2-ジクロロエタン	mg/L	0.04	<0.002	<0.002				
	1,1-ジクロロエチレン	mg/L	1	<0.01	<0.01				
	シス-1, 2-ジクロロエチレン	mg/L	0, 4	<0.01	<0.01				
	1, 1, 1-トリクロロエタン	mg/L	3	<0.01	<0.01				
	1,1,2-トリクロロエタン	mg/L	0.06	<0.002	<0.002				
	1,3-ジクロロプロペン	mg/L	0.02	<0.002	<0.002				
	チウラム	mg/L	0.06	<0.006	<0.006				
	シマジン	mg/L	0.03	<0.003	<0.003				
	チオベンカルブ	mg/L	0. 2	<0.02	<0.02				
	ベンゼン	mg/L	0. 1	<0.01	<0.01				
	1, 4-ジオキサン	mg/L	0. 5	<0.05	<0.05				
参考項目	水温	°C	=	18.5~27.6	19.1~28.7	生物反応槽の日常試験結果			
	ATU-BOD	mg/L	_	<1.0∼2.9	<1.0∼1.4				
	COD _{Mn}	mg/L	_	5. 2~17	5. 2~12				
	DO DO	mg/L	_	0.40~5.00	0.89~3.75	生物反応槽の日常試験結果			
	NH ₄ -N	mg/L		<0.1~6.9	<0.1∼0.6				
	NO ₂ -N	mg/L	100	<0.1∼5.0	<0.1				
	NO ₃ -N	mg/L	= 7 *	0.4~5.1	1.5~3.8				
	PO ₄ -P	mg/L		<0.01∼0.26	0.01~0.48				
	TOC	mg/L	—	4.6~11	3.9~11	終沈流出水の精密試験結果			
	塩化物イオン	mg/L	—	79~510	63~880	流入水の日常試験結果			
	大腸菌群数	個/cm ³	3000	<30	<30	DIG TATE OF THE RESIDENCE			
	流入量	m ³ /∃	-	$4,127\sim17,270$	$9,057\sim14,485$				
	放流量	/ ⊟ m³/ ⊟	-	$3,334 \sim 16,419$	***************************************				
	26~27 年度の亦動祭田け声年度の				.,000 12,002	l			

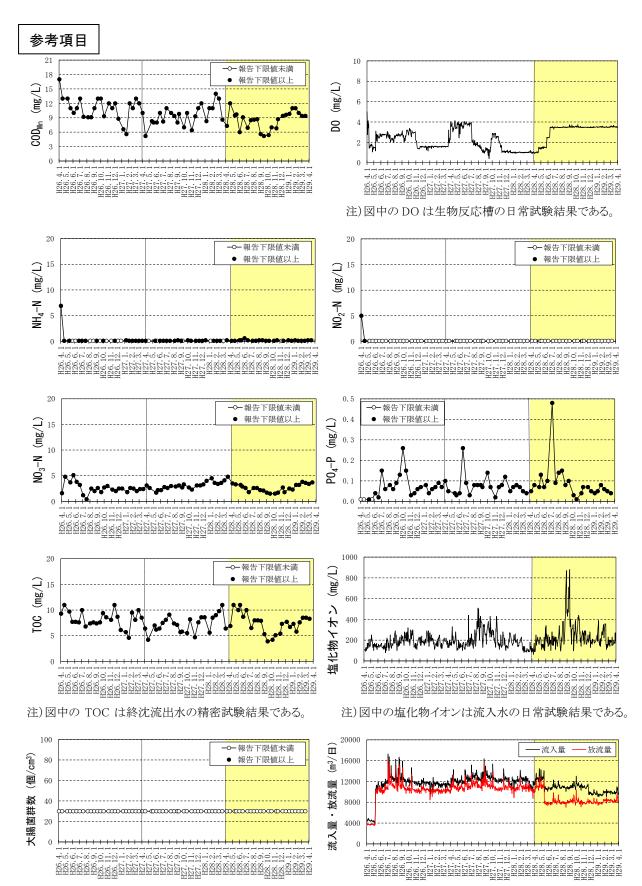

- 注) 平成 26~27 年度の変動範囲は両年度の最小値~最大値を示している。
- ※1 下水道法施行令第5条の五 第二項に規定する計画放流水質基準及び第6条 第一項に規定する放流水の水質の 技術上の基準
- ※2 平成 26 年 12 月 1 日に水質汚濁防止法施行令の一部が改正され、平成 27 年 6 月 1 日よりカドミウムに係る基準が 0.1mg/L 以下から 0.03mg/L 以下に強化された。
- ※3 ND:定量下限値(0.0005mg/L)未満
- ※4 平成 27 年 10 月 21 日に水質汚濁防止法施行令の一部が改正され、平成 28 年 4 月 21 日よりトリクロロエチレンに係る基準が 0.3mg/L 以下から 0.1 mg/L 以下に強化された。

モニタリング調査結果の評価


- ・放流水質は、平成28年度において、供用後の平成26~27年度と同様に、全ての項目において排水基準を満たしていた。
- ・調査結果に基づき、平成 28 年度において、水処理センターから河川へ放流される処理水(放流水)の水質は、適正に管理されていた。


注)図中の報告下限値は、「公共用水域水質測定結果の報告について」(環水規51号、平成5年3月29日、環境省水質保全局長通知)に準拠した表記であり、データを報告・公開する際の数値の下限値である。

注)図中の報告下限値は、「公共用水域水質測定結果の報告について」(環水規 51 号、平成 5 年 3 月 29 日、環境省水質保全局長通知)に準拠した表記であり、データを報告・公開する際の数値の下限値である。



注)図中の報告下限値は、「公共用水域水質測定結果の報告について」(環水規 51 号、平成 5 年 3 月 29 日、環境省水質保全局長通知)に準拠した表記であり、データを報告・公開する際の数値の下限値である。

注)図中の水温は生物反応槽の日常試験結果である。

注)図中の報告下限値は、「公共用水域水質測定結果の報告について」(環水規 51 号、平成 5 年 3 月 29 日、環境省水質保全局長通知)に準拠した表記であり、データを報告・公開する際の数値の下限値である。

注) H28.5.11 までは急速ろ過(p.3) の洗浄に使用した排水を急速ろ過棟へ循環させていたが、H28.5.12 以降、流入量を計測する主ポンプ前へ循環させているため、流入量に洗浄排水量が加算され、流入量と放流量に差が生じている。 注) H28.5.13 以降、汚水の一部を西部水処理センターへ圧送しているため、放流量が減少している。

注)図中の報告下限値は、「公共用水域水質測定結果の報告について」(環水規 51 号、平成 5 年 3 月 29 日、環境省水質保全局長通知)に準拠した表記であり、データを報告・公開する際の数値の下限値である。

環境監視項目 2:放流河川水質

調査の目的

・処理水の放流先である瑞梅寺川(放流河川)の水質への影響を監視する。

調査期間

・供用前(事前)と供用後

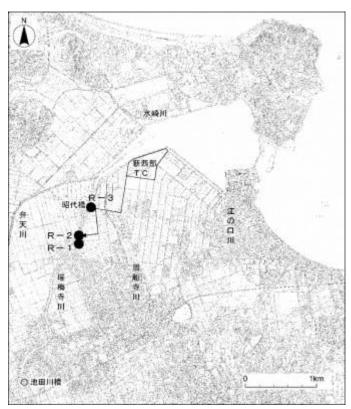
調査項目

- •放流河川水質
- ①評価項目は、環境基準が設定されている pH、BOD、DO、SS、大腸菌群数(生活環 境項目)とした。
- ②参考項目は、水温、ATU-BOD、COD_{Mn}、 塩化物イオン、EC、T-N、O-N、NH₄-N、 NO₂-N、NO₃-N、T-P、PO₄-P、TOC、クロ ロフィル a とした。
- ③参考として以下の気象状況も整理した。 気象状況:降水量(糸島市池田)、 気温、全天日射量(福岡管区気

気温、全天日射量(福岡管区気象台-福岡市中央区)

調査方法

・調査地点: 放流口上流(R-1)、 放流口(河川へ流入する直前、 R-2)、


環境基準点の昭代橋(R-3)

- •調査時期:大潮満潮時(新月付近)
- ・採取方法:分析試料は、バケツを用いて流心付近の表層より採取した。
- ・分析方法、調査頻度、調査日:下表のとおり

<評価項目>

分析項目	分析方法	調査頻度	調査日
рН	JIS K0102 -2016- 12	年8回	平成 28 年
BOD	JIS K0102 -2016- 21		4月8日、5月7日、
DO	JIS K0102 -2016- 32		7月4日、8月3日、
SS	環境庁告示第 59 号(S46.12)付表 9		9月1日、12月29日、
大腸菌群数	環境庁告示第 59 号(S46.12)別表 2 の 1 の		平成 29 年
	(1)備考 4		1月28日、2月26日

注)表中の分析方法は、最新の分析方法の表記名を記載した。

調査地点

<参考項目>

分析項目	分析方法	調査頻度	調査日
水温	JIS K 0102 -2016- 7.2	年8回	平成 28 年
ATU-BOD	JIS K 0102 -2016- 21 備考 1		4月8日、5月7日、
COD_{Mn}	JIS K 0102 -2016- 17		7月4日、8月3日、
塩化物イオン	JIS K 0102 -2016- 35		9月1日、12月29日、
EC	JIS K 0102 -2016- 13		平成 29 年
T-N	JIS K 0102 -2016- 45		1月28日、2月26日
O-N	計算による [O-N]=[T-N]-[NH4-N]-		
	$[NO_3-N]-[NO_2-N]$		
NH ₄ -N	JIS K 0102 -2016- 42		
NO ₂ -N	JIS K 0102 -2016- 43.1		
NO ₃ -N	JIS K 0102 -2016- 43.2		
Т-Р	JIS K 0102 -2016- 46.3		
PO ₄ -P	JIS K 0102 -2016- 46.1		
TOC	JIS K 0102 -2016- 22.1		
クロロフィル a	海洋観測指針 -1999- 6.3		

注)表中の分析方法は、最新の分析方法の表記名を記載した。

環境基準

<生活環境項目>

		達		環境基準値				
河川	類型	成 期 間	水素イオン 濃度 (pH)	生物化学的 酸素要求量 (BOD)	浮遊物質量 (SS)	溶存酸素量 (D0)	大腸菌群数	類型指定年月日
瑞梅寺川全域	Α	イ	6.5 以上 8.5 以下	2mg/L以下	25mg/L 以下	7.5mg/L 以上	1,000MPN/ 100mL 以下	平成8年6月 14日福岡県告 示第1141号

注)達成期間の分類「イ」は、"直ちに達成"

調査結果のとりまとめ方法

- ・放流河川の水質について、事前調査結果による供用前の変動範囲との比較^{※1}、季節変化の特徴の整理、環境基準点における環境基準値との比較、経年変化傾向の特徴の整理^{※2}を行い、供用後の評価を行った。
 - ※1 変動範囲とは、供用前や供用後などの各期間における調査結果の最小値から最大値までの範囲と定義する。 事前調査結果(供用前)による変動範囲との比較では、当該年度の調査結果が変動範囲内にある場合には「供用前の変動範囲内にある」とした。また、変動範囲を外れた場合でもその値が最小値・最大値から 10%以内であれば「供用前と同程度の変動範囲内にある」とし、それ以上外れた場合には「最小値より低い」あるいは「最大値より高い」とした。
 - ※2 経年変化傾向については、各項目において有意性を検定し、「横ばい傾向」、あるいは「増加・減少傾向(上昇・低下傾向)」を判断した。

調査結果

変動範囲

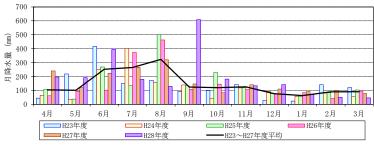
・平成 28 年度における放流口上流のR-1では、pH、BOD、DO、大腸菌群数は供用前と同程度の変動範囲内で推移した。SS は、8 月に供用前の最大値より高かった。調査前の 7 月 14 日から調査当日(8 月 3 日)の降水量が少なかったことや(数値表 p.10)、pH、DO、BOD、クロロフィル a が上昇していることから、河川水の滞留に伴い内部生産量が増加したことによると考えられる。その他の月の SS は、供用前の変動範囲内にあった。

平成 28 年度の変動範囲は、pH が 7.4~8.1、BOD が 0.6~3.6mg/L、DO が 7.2~10.9mg/L、SS が 3~22mg/L、大腸菌群数が 1100~79000MPN/100mL であった。

・環境基準点のR-3では、pH、DO、SS、大腸菌群数は供用前と同程度の変動範囲内で推移した。BOD は 4 月に供用前の最大値より高かった。pH、DO、クロロフィル a の上昇はみられておらず、内部生産量の増加によるものとは考えにくいことや、放流口上流のR-1でも BOD、TOC が上昇しており、調査前日(4月7日)に日降水量 37.5mm の降雨がみられたことから、降雨に伴う放流口上流からの有機物の流下による BOD の上昇と考えられる。その他の月の BOD は、供用前の変動範囲内にあった。

平成 28 年度の変動範囲は、pH が 7.5~7.6、BOD が 0.7~2.5mg/L、DO が 3.5~11.5mg/L、SS が 4~14mg/L、大腸菌群数は 790~11000MPN/100mL であった。

季節変化

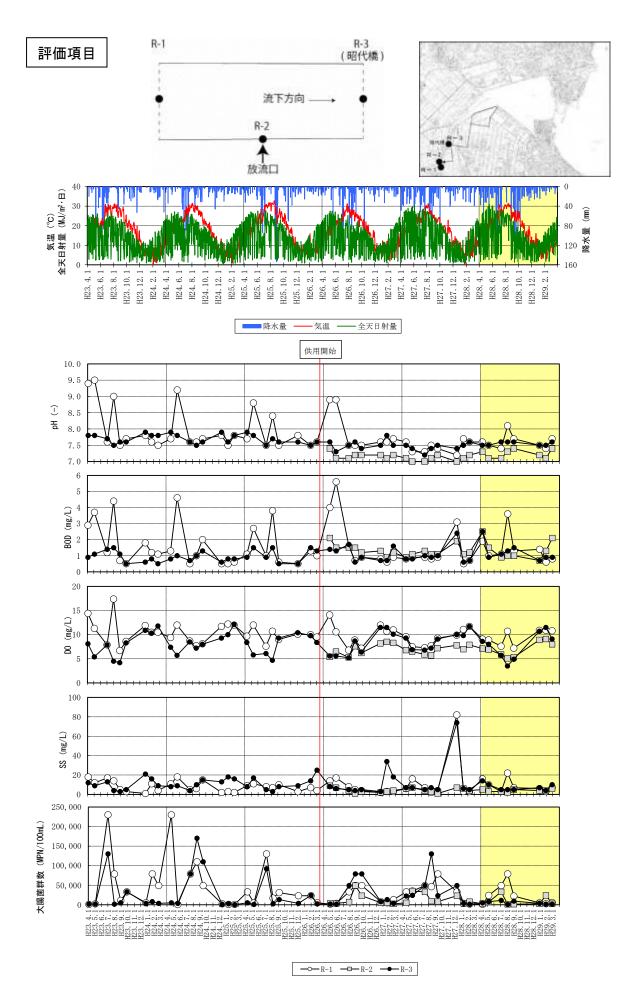

- ・放流口上流のR-1では、4月に降雨に伴う上流からの有機物の流下によると考えられるBOD、TOCの上昇がみられた。また、4月や5月に過年度と比べて降水量が多かったため、河川水量が多くなったことで、供用前にみられたような河川水の滞留に伴う内部生産量の増加と考えられるpHやDO、クロロフィルaの上昇はみられなかった。その後、8月には内部生産量の増加によると考えられるpH、SS、DO、BOD、クロロフィルaの上昇がみられた。上昇した項目はいずれも翌調査時には減少しており、上昇は一時的であった。
- ・環境基準点のR-3では、放流口上流のR-1と同様に、4月に出水による有機物の流下に伴うBOD、TOCの上昇がみられた。その後は顕著な上昇はみられなかった。

環境基準との比較

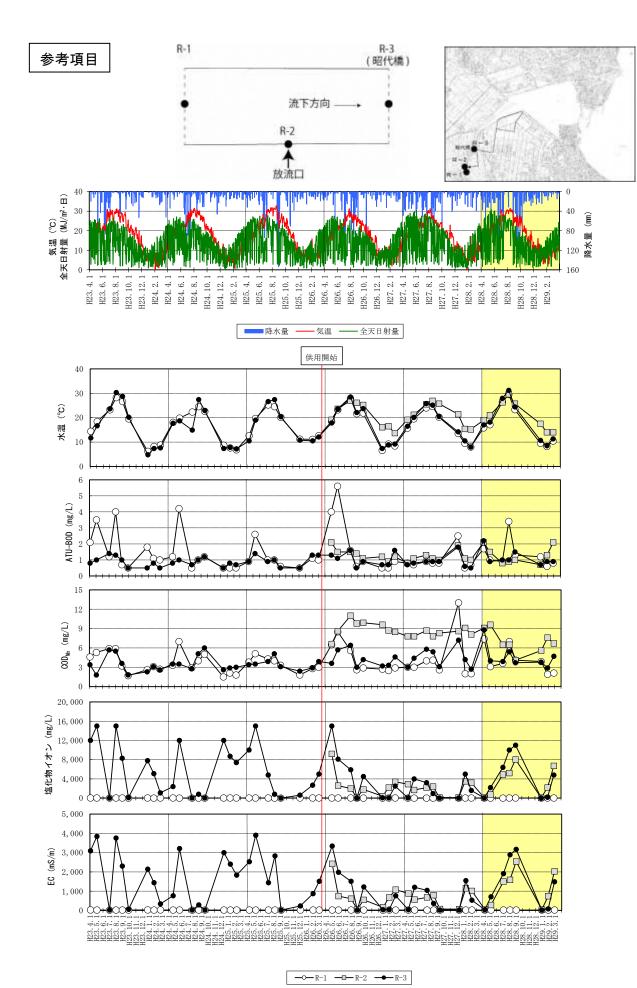
・平成28年度におけるR-3の結果を環境基準値と比較すると、pH、SSは全ての調査において環境基準を満足していた。BODは、供用前には全ての年度で環境基準を満足していた4月において環境基準を満足しなかった。上述のとおり、降雨に伴う上流からの有機物の流下により環境基準を満足しなかったと考えられる。その他の月では供用前と同様に、環境基準を満足していた。大腸菌群数は、8月を除く全ての調査(7回)で環境基準を満足していないが、環境基準値の超過は供用前にもみられている。

経年変化

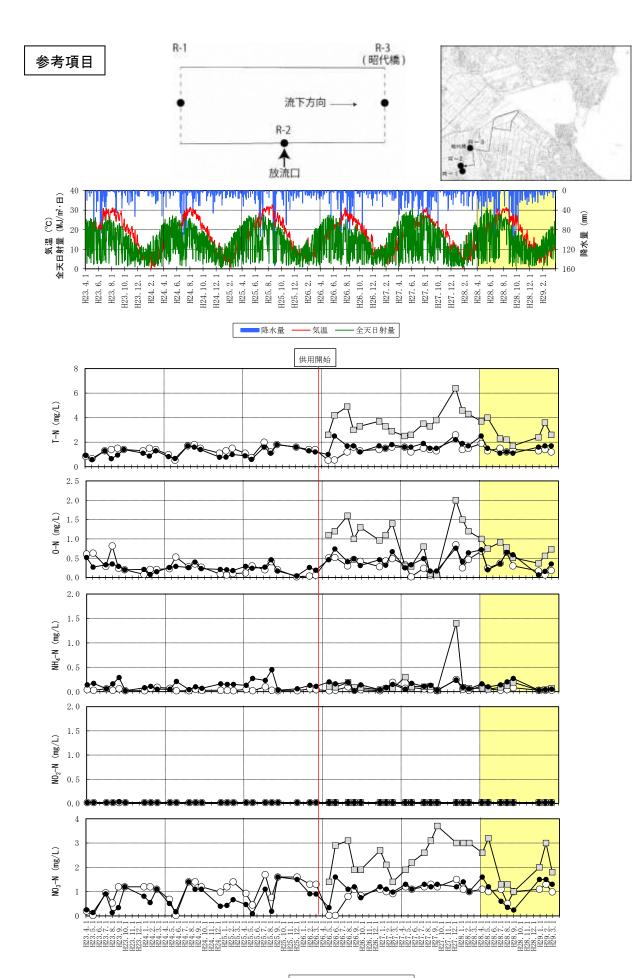
- ・放流口上流のR-1では、河川水の滞留に伴う内部生産量の増加と考えられる pH や DO、BOD の一時的な上昇が、供用前から平成 26 年度の 4 月や 5 月、平成 28 年度の 8 月にみられている。この一時的な増加のほかは、供用前から供用後の平成 28 年度にかけて概ね横ばい傾向である。
- ・大腸菌群数はR-1とR-3において、供用前から供用後の平成 28 年度まで、多くの月で環境基準を満たしていない状況が続いているものの、経年的な増加傾向はみられていない。

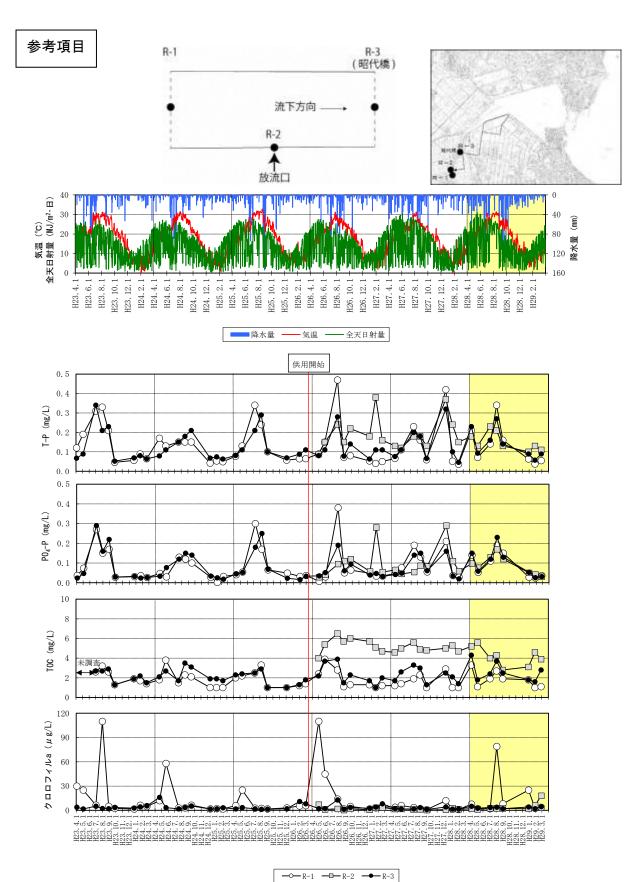


月降水量の推移


供用前と供用後の平成 26~27 年度、平成 28 年度の変動範囲 (放流河川)

		地点	供用前	供月	月後
		元二元	(H23∼H25)	H26∼H27	H28
		R-1	7.5∼9.5	7.2~8.9	7.4~8.1
	pH (-)	R-2	_	$7.0 \sim 7.4$	7.1~7.4
		R-3	7.5~7.9	7.2~7.8	7.5~7.6
	(R-1	$<0.5\sim4.6$	<0.5∼5.6	0.6~3.6
	BOD (mg/L)	R-2	-	0.9~2.1	$0.7 \sim 2.5$
評		R-3	<0.5∼1.5	0.6~2.4	$0.7 \sim 2.5$
価	(R-1	6.7 \sim 17.4	6.8∼14.1	7.2~10.9
項	DO (mg/L)	R-2	_	5.3~8.5	5.1~9.1
lel		R-3	4. 2~12. 1	$5.2 \sim 11.7$	3.5~11.5
1, ,		R-1	1~18	2~82	3~22
	SS (mg/L)	R-2 R-3	_	<1∼9	2~6
			3∼25	3∼74	4~14
	1 777	R-1	490~230000	$1700 \sim 79000$	$1100 \sim 79000$
	大腸菌群数(MPN/100mL)	R-2	_	$2300 \sim 49000$	1100~33000
		R-3	330~170000	1100~130000	790~11000
		R-1	$6.2\sim28.2$	6.6∼27.9	8.2~29.5
	水温 (℃)	R-2	_	13.7 \sim 27.0	14.0~29.6
		R-3	4.8~30.3	7.4~28.5	8.5∼31.2
		R-1	$<0.5\sim4.2$	$<0.5\sim5.6$	0.6~3.4
	ATU-BOD (mg/L)	R-2	_	0.8~2.1	$0.7\sim2.1$
		R-3	<0.5∼1.4	<0.5∼1.8	$0.7\sim 2.2$
		R-1	1.5~7.0	2.0~13	1.9~7.4
	COD_{Mn} (mg/L)	R-2	_	6.6~11	4.1~9.6
		R-3	1.8~6.0	$2.7 \sim 7.2$	2.9~8.8
		R-1	10~23	11~18	12~16
	塩化物イオン(mg/L)	R-2	_	110~9200	63~ 8000
		R-3	$12\sim15000$	$17 \sim 15000$	31~11000
		R-1	14.5 \sim 23.6	15.0~22.0	17.5~22.3
	EC (mS/m)	R-2	_	61.4~2420	$42.4 \sim 2540$
		R-3	15.6~3900	17.0~3340	25.7~3170
		R-1	$0.53\sim2.0$	0.53~2.6	1.2~1.9
	T-N (mg/L)	R-2	_	2. 5∼6. 4	1.7~4.0
		R-3	0.58~1.8	$1.0 \sim 2.5$	1.1~2.5
		R-1	$<0.02\sim0.82$	<0.02∼0.85	$0.07 \sim 0.68$
参	O-N (mg/L)	R-2	_	$0.07\sim2.0$	$0.37 \sim 1.0$
考		R-3	$0.04 \sim 0.52$	$0.17 \sim 0.76$	$0.07 \sim 0.72$
項		R-1	$<0.02\sim0.10$	<0.02∼0.25	0.03~0.12
目目	$NH_4-N \ (mg/L)$	R-2	-	0.03~1.4	0.03~0.19
		R-3	$<0.02\sim0.45$	$0.02 \sim 0.24$	0.03~0.27
		R-1	<0.02~0.02	<0.02	<0.02∼0.02
	NO_2 -N (mg/L)	R-2	_	<0.02	<0.02
		R-3	<0.02∼0.03	<0.02	<0.02∼0.02
		R-1	<0.02∼1.7	<0.02∼1.5	0.51~1.3
	NO_3 -N (mg/L)	R-2	—	$1.4 \sim 3.7$	1.0 ~3.2
		R-3	0.09~1.6	0.34~1.6	0.24~1.6
	m = (/ / / / / / / / / / / / / / / / / /	R-1	0.042~0.34	$0.036 \sim 0.47$	0.037~0.34
	$T-P \ (mg/L)$	R-2	_	0.088~0.38	0.10 ~0.23
		R-3	0.052~0.34	0.046~0.32	$0.057 \sim 0.27$
	DO D (12)	R-1	0.002~0.30	$0.007 \sim 0.38$	0.024~0.19
	PO_4 -P (mg/L)	R-2	_	0.028~0.29	0.031~0.17
		R-3	0.016~0.29	0.020~0.19	0.026~0.23
	mac (/r)	R-1	<1.0∼3.8	<1.0~3.9	<1.0∼3.3
	TOC (mg/L)	R-2	_	$4.0 \sim 6.5$	2.8~5.6
		R-3	<1.0∼3.5	<1.0∼3.9	1.6~4.3
		R-1	1.6~110	0.9~110	2.0~79
	クロロフィルa(μg/L)	R-2	— 	0.3~7.0	1.2~18
Ϋ́		R-3	1.4~16	1.0~13	2.0~5.0
√ 1 \	供用前の変動範囲は平成 23~2	定年由	リアナリナス 具 小. 估 。.	是土荷の窓囲な子	1 ブルマ


注)供用前の変動範囲は平成23~25年度における最小値~最大値の範囲を示している。 供用後の平成26~27年度の変動範囲は両年度の最小値~最大値を示している。


水質の経年変化

水質の経年変化

→ R-1 → R-2 → R-3 水質の経年変化

水質の経年変化

モニタリング調査結果の評価

- ・放流口下流に位置するR-3では、平成28年度において、BODとTOCが一時的に供用前の変動範囲より高くなり、BODは供用前には環境基準を満足していた4月に環境基準を満足しなかったが、これらは気象要因によると考えられる。
- ・R-3では、平成 28 年度における水質の季節変化の特徴は供用前と概ね同様の傾向を示しており、供用前から供用後の平成 28 年度にかけて経年的な増減傾向はみられなかった。
- ・調査結果に基づき、平成28年度において、処理水の放流による瑞梅寺川(放流河川)の水質への影響は小さかったと考えられる。

環境監視項目3:臭気

調査の目的

・処理水の放流に伴う周辺環境への臭気による影響を監視する。

調査期間

・供用前と供用後

調査項目

- •臭気
- ①評価項目は、臭気強度、臭気指数とした。
- ②参考項目は、気温、風向、風速とした。

調査方法

·調査地点:放流口(R-2)、


放流口から風下側の民家周辺 4 地点(A-1~A-4)

•調査日:平成28年8月4日

・採取方法: 現地において臭気の種類、臭気強度を測定した後に、小型の吸引ポンプを用い、分析試料をテドラーバッ

グに採取した。

・試験方法:三点比較式臭袋法による嗅覚試験。

調査地点

<評価項目>

分析項目または測定項目	分析方法または測定方法	調査頻度	調査日
臭気強度	6 段階臭気強度表示法	年1回	平成28年8月4日
臭気指数	環境庁告示 63 号(H7.9)別表		

注)表中の分析方法または測定方法は、最新の方法の表記名を記載した。

<参考項目>

測定項目	測定方法	調査頻度	調査日
気温	JIS K 0101 -1998- 6.1	年1回	平成28年8月4日
風向	風向風速計による		
風速			

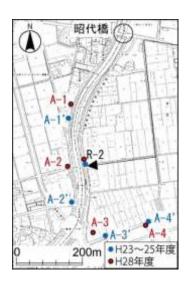
注)表中の測定方法は、最新の測定方法の表記名を記載した。

調査結果のとりまとめ方法

・放流口周辺の臭気について、現状の特徴をとりまとめ、悪臭防止対策指導要綱に基づく指導基準と比較し、 供用後の評価を行った。

調査結果

- ・平成 28 年度の調査時には、北〜東方向から風が吹いていたため、A-1〜A-4はその後の風向の変化に 応じて、放流口から風下側の民家周辺の場所を選定した。
- ・放流口(R-2)および放流口から風下側の民家周辺ではいずれも、磯臭などの特異な臭気は確認されておらず、全地点で指導基準を満足していた。


臭気調査結果

	臭気強度			臭気指数				測定状況(参考項目)		
地点	供用前	供用後	ž	供用前	供用後		指導基準	気温	風向	風速
	(H23~H25)	H26~H27	H28	(H23~H25)	H26~H27	H28		X()皿)型([P]	(5 分間平均)	
R-2	0.6~1.3	0.3~1.2	0.3	<10	<10	<10		33.4℃	北~北北東	0.6m/s
A-1			0.1			<10	自与比粉	33.8℃	北北西~北北東	1.2m/s
A-2	0.4~1.0	0.2~1.2	0.3	<10	<10	<10	臭気指数 10未満※	34.2℃	北西~北	1.9m/s
A-3	0.47~1.0	0.4	0.4	\10	\10	<10	10水個…	32.2℃	北~北東	1.3m/s
A-4			0.2			<10		31.9℃	西~北東	1.7m/s

- 注 1)供用前の変動範囲は平成 23~25 年度における最小値~最大値の範囲を示している。 供用後の平成 26~27 年度の変動範囲は両年度の最小値~最大値を示している。
- 注 2) 福岡市では、指導基準の臭気指数を 6 段階臭気強度表示法の臭気強度 2.5 に対応する濃度として設定している。 なお、「悪臭防止行政ガイドブック(平成 8 年 3 月、環境庁)」では、臭気強度 2.5 に対応する臭気指数は 10~15 の範囲となっており、福岡市では、この臭気指数の範囲のうち、10 を指導基準としている。

【参考】6段階臭気強度表示法

臭気強度	においの程度
0	無臭
1	やっと感知できるにおい(検知閾値濃度)
2	何のにおいであるかがわかる弱いにおい(認知閾値濃度)
3	らくに感知できるにおい
4	強いにおい
5	強烈なにおい

モニタリング調査結果の評価

- ・放流口(R-2)および放流口から風下側の民家周辺では、平成 28 年度において、供用前および供用後の 平成 26~27 年度と同様に、いずれの地点も指導基準を満足していた。
- ・調査結果に基づき、平成28年度において、処理水の放流に伴う周辺環境への臭気による影響は小さかったと考えられる。

環境監視項目4:今津干潟および周辺の水環境

調査の目的

・放流先である今津干潟および周辺の水質への影響を監視する。

調査期間

・供用前と供用後

調査項目

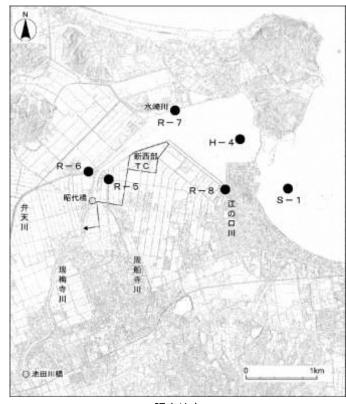
- ・今津干潟および今津湾の水質
- ①評価項目は、濁り、有機物、栄養塩類に係るものとして、SS、COD_{Mn}、T-N、O-N、NH₄-N、NO₂-N、NO₃-N、T-P、PO₄-P、TOC、クロロフィル a とした。
- ②参考項目は、水温、塩化物イオン、EC、水深、<u>透明度、赤潮発生状況、水温・塩分・DO・クロロフィル蛍光</u> 強度鉛直分布とした。(下線部はH-4とS-1のみ)
- ③放流河川以外の河川からの流入を把握するために、瑞梅寺川以外の流入河川水質についても、同様の項目 (SS、COD_{Mn}、T-N、O-N、NH₄-N、NO₂-N、NO₃-N、T-P、PO₄-P、TOC、クロロフィル a、水温、塩化物イオン、EC、水深)を調べた。
- ④参考として以下の気象状況も整理した。

降水量(糸島市池田)、気温、全天日射量(福岡管区気象台:福岡市中央区)

調査方法

·調查地点:今津干潟(H-4)、今津湾(S-1)、

流入河川(R-5、R-6、R-7、R-8)


•調査時期:新月大潮時

流入河川水質調査と同一日とし、今 津干潟および今津湾では満潮時、流 入河川では干潮時とした。

・採取方法:分析試料は、流入河川(R-5、R-6、R-7、R-8)ではバケツを用いて流心表層より採取した。

H-4、S-1では、表層(海面下 0.5m)、底層(海底上 0.5m)において バンドーン型採水器を用いて船上より採取した。

・測定方法: H-4、S-1では、船上から多項目水質計(ハイドロラボ社製 DS5型)を約 10cm/s の速度でゆっくりと垂下させながら、水温・塩分・DO・クロロフィル蛍光強度の鉛直分布を測定した。測定間隔は 10cm とし、測定範囲は海面から海底直上までとした。なお、測定時に水質が大きく変化した場合には多項目水質計の垂下を止めて値が安定するまで測定するなど、鉛直方向の水質変化が把握できるように留意した。

調査地点

・分析方法または測定方法、調査頻度、調査日:下表のとおり

<評価項目>

分析項目	分析方法	調査頻度	調査日
SS	環境庁告示第 59 号(S46.12)付表 9	年8回	平成 28 年
COD_{Mn}	JIS K 0102 -2016- 17		4月8日、5月7日、
T-N	JIS K 0102 -2016- 45		7月4日、8月3日、
O-N	計算による [O-N]=[T-N]-[NH4-N]-		9月1日、12月29日、
	$[NO_3-N]-[NO_2-N]$		平成 29 年
NH ₄ -N	JIS K 0102 -2016- 42		1月28日、2月26日
NO ₂ -N	JIS K 0102 -2016- 43.1		
NO ₃ -N	JIS K 0102 -2016- 43.2		
Т-Р	JIS K 0102 -2016- 46.3		
PO ₄ -P	JIS K 0102 -2016- 46.1		
TOC	JIS K 0102 -2016- 22.1		
クロロフィル a	海洋観測指針 -1999- 6.3		

注)表中の分析方法は、最新の分析方法の表記名を記載した。

<参考項目>

分析項目または測定項目		分析方法または測定方法	調査頻度	調査日
水温		JIS K 0102 -2016- 7.2	年8回	平成 28 年
塩化	ご物イオン	JIS K 0102 -2016- 35		4月8日、5月7日、
EC		JIS K 0102 -2016- 13		7月4日、8月3日、
水沒		レッド測深		9月1日、12月29日、
透明	度	海洋観測指針 -1999- 3.2		平成 29 年
	水温	サーミスター電極法		1月28日、2月26日
6/\	塩分	電気伝導度より換算		
鉛直	密度 o t	海洋観測指針 -1999- 3.2 に基づき、水温・		
分		塩分より計算		
有	рН	ガラス電極法		
\ \ \ \ \ \ \ \ \ \ \ \ \ \	クロロフィルa蛍光強度	蛍光強度法		
	DO	蛍光式溶存酸素法		

注)表中の分析方法または測定方法は、最新の方法の表記名を記載した。

調査結果のとりまとめ方法

- ・今津干潟、今津湾および今津干潟周辺の流入河川の水質について、事前調査結果による供用前の変動範囲との比較*1、季節変化の特徴の整理、経年変化傾向の特徴の整理*2を行い、供用後の評価を行った。
 - ※1 変動範囲とは、供用前や供用後などの各期間における調査結果の最小値から最大値までの範囲と定義する。 事前調査結果(供用前)による変動範囲との比較では、当該年度の調査結果が変動範囲内にある場合には「供用前の変動範囲内にある」とした。また、変動範囲を外れた場合でもその値が最小値・最大値から 10%以内であれば「供用前と同程度の変動範囲内にある」とし、それ以上外れた場合には「最小値より低い」あるいは「最大値より高い」とした。
 - ※2 経年変化傾向については、各項目において有意性を検定し、「横ばい傾向」、あるいは「増加・減少傾向(上昇・低下傾向)」を判断した。

調査結果

干潟·海域

<変動範囲>

・平成 28 年度における干潟のH-4では、7 月に表層の O-N とクロロフィル a が供用前と比べて高かったほかは、供用前と同程度の変動範囲内で推移した。7 月の O-N とクロロフィルaの増加は、降雨後の高日射に伴い発生したと考えられる赤潮が6月1日から27日にかけて博多湾の広い範囲で確認されていることから、この赤潮の影響と考えられる。

平成 28 年度の変動範囲は、SS が $3\sim12\text{mg/L}$ 、 COD_{Mn} が $1.2\sim3.5\text{mg/L}$ 、T-N が $0.19\sim0.41\text{mg/L}$ 、O-N が $0.10\sim0.41\text{mg/L}$ 、 NH_4-N が 0.02 未満 $\sim0.12\text{mg/L}$ 、 NO_2-N が 0.02mg/L 未満、 NO_3-N が 0.02 未満 $\sim0.08\text{mg/L}$ 、T-P が $0.016\sim0.079\text{mg/L}$ 、 PO_4-P が 0.001 未満 $\sim0.019\text{mg/L}$ 、TOC が $1.0\sim2.1\text{mg/L}$ 、クロロフィル a が $2.3\sim31~\mu$ g/L であった。

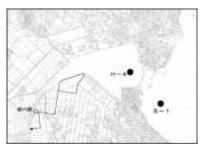
・海域の**S-1**では、5月に底層で T-Nと T-P が供用前と比べて低く、7月に表層でクロロフィル a が高かったほかは、供用前と概ね同程度の変動範囲内で推移した。7月のクロロフィル a の増加は、調査日前に確認された赤潮の影響と考えられる。

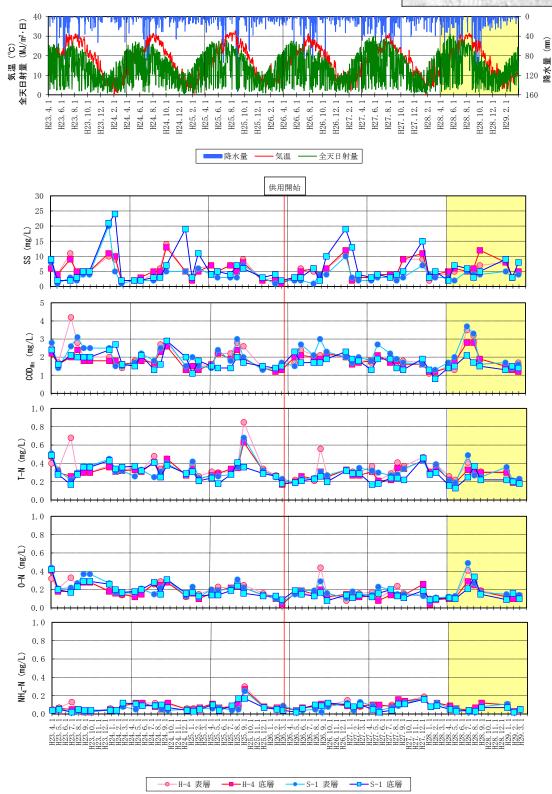
平成 28 年度の変動範囲は、SS が $2\sim9$ mg/L、 COD_{Mn} が $1.3\sim3.7$ mg/L、T-N が $0.13\sim0.49$ mg/L、O-N が $0.09\sim0.49$ mg/L、 NH_4-N が 0.02 未満 ~0.11 mg/L、 NO_2-N が 0.02mg/L 未満、 NO_3-N が 0.02 未満 ~0.10 mg/L、T-P が $0.012\sim0.060$ mg/L、 PO_4-P が 0.001 未満 ~0.014 mg/L、TOC が 1.0 未満 ~1.9 mg/L、TDC か 1.0 未満 ~1.9 mg/L TDC TDC か 1.0 未満 ~1.9 mg/L TDC TD

<季節変化>

- ・干潟のH-4と海域のS-1では、T-N、T-Pが5月に低かった後、7月に赤潮の影響と考えられるCOD_{Mn}、O-N、クロロフィル a の上昇が、8月にも赤潮の発生は確認されていないものの、内部生産の増加によると考えられるCODMn、クロロフィル a の上昇がみられた。上昇した項目は夏季以降に減少し、その後は顕著な上昇はみられなかった。
- S-1では、8月に貧酸素水塊が確認された。

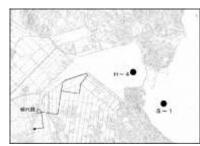
く経年変化>

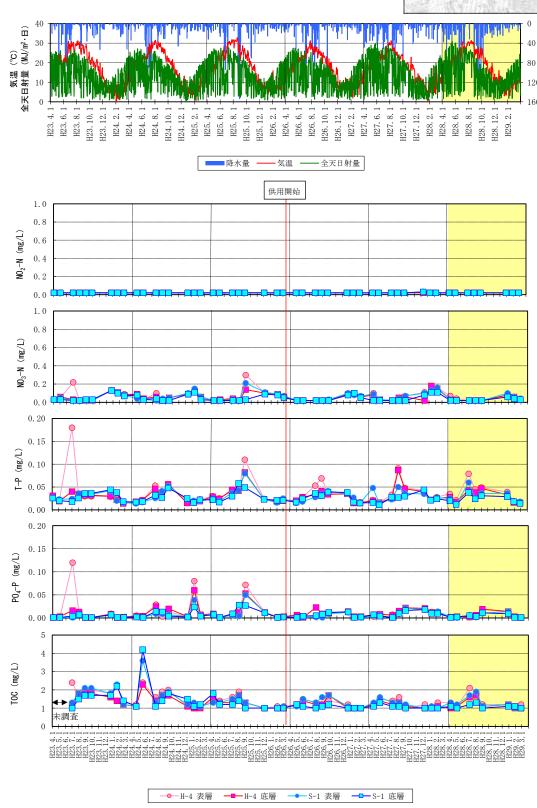

- ・SS は、海域のS-1において、冬季(12月~2月)に波浪の影響と考えられる増加が供用前から供用後の平成27年度までみられているほかは、横ばい傾向にある。
- ・COD_{Mn}、クロロフィル a は、供用前から春季や夏季に高くなる月がみられており、供用後においても同様の傾向がみられている。これらの多くは周辺海域で発生している赤潮の影響を受けていることが考えられる。このように一時的な値の上昇はあるものの、経年的には横ばい傾向である。
- •T-N、T-P は、降雨による河川からの出水の影響を受け、一時的に高くなることがあるが、経年的には供用前から供用後の平成 28 年度まで横ばいで推移している。
- ·S-1では、供用前から供用後の平成28年度まで、多くの年で8~9月に貧酸素水塊が確認されている。


供用前と供用後の平成 26~27 年度、平成 28 年度の変動範囲(干潟・海域)

	スカラー これの とり こう	ζ 20.	21 45	度、平成 28 年度 <i>の</i>	/ 支 判 乳 四 () 何	- 两以)
		ᆂ	= 🖂	供用前	供月	用後
İ,	項目	地点	. 層	(H23~H25)	H26∼H27	H28
			表層	2~14	2~11	3~8
	SS (mg/L)	H-4	底層	1~13	$2 \sim 12$	3∼12
		S-1	表層	<1~20	1~10	2~5
			底層	2~24	2~19	2~9
			表層	1.3~4.2	$1.1\sim2.4$	1.3~3.5
		H-4	底層	$1.3 \overset{4.2}{\sim} 2.6$	$1.1 - 2.4$ $1.2 \sim 2.2$	•
	COD _{Mn} (mg/L)					1.2~2.8
		S-1	表層	1.3~3.1	1.3~3.0	1.4~3.7
i			底層	1.1~2.9	0.8~2.3	1.3~2.1
i		H-4	表層	0.17~0.85	$0.21 \sim 0.56$	0.21~0.41
i	T-N (mg/L)		底層	0.17~0.63	$0.20 \sim 0.43$	0.19~0.33
i		S-1	表層	0.22~0.68	$0.19 \sim 0.43$	0.19~0.49
i l			底層	$0.17 \sim 0.49$	$0.17 \sim 0.46$	0.13~0.37
i		H-4	表層	0.03~0.33	$0.08 \sim 0.44$	$0.10 \sim 0.41$
	0-N (mg/L)	11 1	底層	0.04~0.41	0.04~0.26	0.10~0.29
i	O N (mg/L)	S-1	表層	$0.07 \sim 0.44$	$0.07 \sim 0.29$	$0.12 \sim 0.49$
		3 1	底層	$0.09 \sim 0.42$	0.08~0.20	0.09~0.34
i [11 4	表層	0.02~0.30	$0.04 \sim 0.19$	<0.02∼0.12
	MII N (/I)	H-4	底層	0.02~0.27	0.04~0.17	0.03~0.12
	$NH_4-N \ (mg/L)$	C 1	表層	<0.02∼0.25	0.02~0.17	<0.02∼0.11
		S-1	底層	<0.02~0.17	<0.02∼0.16	⟨0.02∼0.07
評		1	表層	<0.02	<0.02~0.03	<0.02
価		H-4	底層	<0.02	<0.02	<0.02
項	NO_2 -N (mg/L)		表層	<0.02	<0.02~0.03	<0.02
目		S-1	底層			
				<0.02	<0.02~0.03	<0.02
		H-4	表層	<0.02~0.30	<0.02~0.16	<0.02~0.08
	NO_3 -N (mg/L)		底層	<0.02~0.14	<0.02~0.18	<0.02~0.08
	1103 11 (118/12)		表層	<0.02∼0.21	<0.02∼0.16	⟨0.02∼0.10
			底層	<0.02∼0.13	<0.02∼0.11	<0.02∼0.06
		H-4	表層	0.016~0.18	$0.016 \sim 0.091$	$0.017 \sim 0.079$
	T-P (mg/L)		底層	$0.014 \sim 0.082$	$0.015 \sim 0.087$	$0.016 \sim 0.047$
i	I I (mg/L)	S-1	表層	$0.014 \sim 0.080$	$0.015 \sim 0.050$	0.012~0.060
			底層	$0.016 \sim 0.058$	$0.011 \sim 0.044$	0.012~0.038
i [11 4	表層	<0.001~0.12	0.002~0.022	<0.001∼0.018
	DO D (/I)	H-4	底層	<0.001~0.060	$0.001 \sim 0.023$	<0.001∼0.019
i	PO_4 -P (mg/L)	0 4	表層	<0.001~0.050	<0.001~0.021	<0.001∼0.014
		S-1	底層	<0.001~0.028	<0.001~0.018	<0.001∼0.011
i i			表層	<1.0∼2.4	<1.0~1.6	1.1~2.1
i		H-4	底層	<1.0~2.3	<1.0~1.7	1.0~1.7
	TOC (mg/L)	000000000000000000000000000000000000000	表層			
		S-1	<u>衣眉</u> 底層	$\langle 1.0 \sim 3.6 \rangle$	$\langle 1.0 \sim 1.7$	1.0~1.9
į		1		(1.0~4.2	<1.0~1.3	⟨1.0∼1.3
		H-4	表層	1.0~19	1.0~7.7	2.9~31
	クロロフィルa(μg/L)		<u></u>	0.9~20	1.0~7.2	2.3~19
		S-1	表層	1.3~28	1.4~28	4.8~36
$\vdash \vdash$		1	底層	1.2~24	1.4~8.7	2.3~9.3
		H-4	表層	$7.9 \sim 30.5$	8.8~26.8	9.4~30.3
	水温 (℃)	1	底層	7.9~30.4	8.8~26.8	$9.4 \sim 29.5$
	/J. IIII. (C)	S-1	表層	7.9~30.4	$8.5 \sim 26.9$	9.1~30.6
		0 1	底層	8.2~29.6	9.0~26.0	9.5~26.5
i l		ц 4	表層	11000~20000	17000~20000	17000~20000
	佐ル畑ノナン (/1)	H-4	底層	15000~20000	17000~20000	17000~20000
参	塩化物イオン(mg/L)	C 4	表層	13000~20000	15000~20000	17000~19000
考		S-1	底層	17000~20000	18000~20000	19000~20000
項			表層	3170~4830	$3490 \sim 5000$	4520~5060
自		H-4	底層	3930~4810	$3510 \sim 5000$	$4650\sim5050$
	EC (mS/m)		表層	3430~4800	2940~4980	4560~5030
		S-1	<u> </u>	$4220 \sim 4920$		
		L	<u> </u>		3460~5080	4900~5120
	水深(m)		***************************************	2.1~3.1	2.0~2.6	2.0~2.9
			5-1	5.2~6.2	5.6~6.1	5.4~6.3
	透明度 (m)	******************	I-4	1.1~2.7	1.2~2.6	1.4~>2.9
ш			5-1	1. 2~5. 1	1.2~4.1 大値の範囲を示して	1.7~3.8

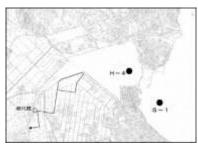
注)供用前の変動範囲は平成23~25年度における最小値~最大値の範囲を示している。 供用後の平成26~27年度の変動範囲は両年度の最小値~最大値の範囲を示している。

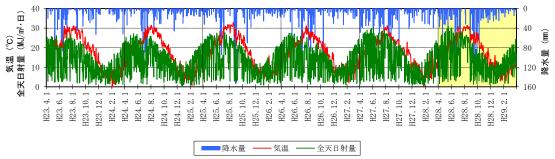

干潟・海域(評価項目)

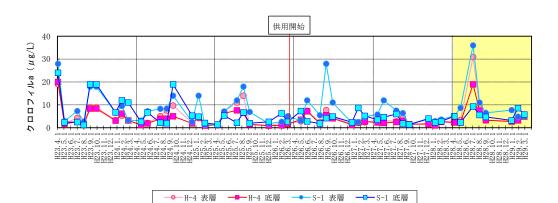


水質の経年変化

干潟・海域(評価項目)

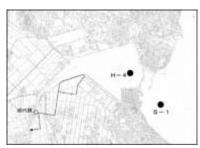


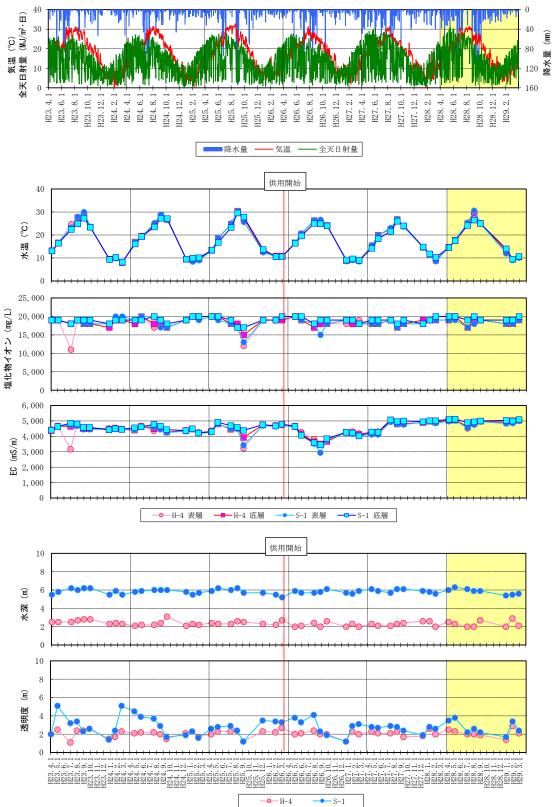

降水量 (mm)

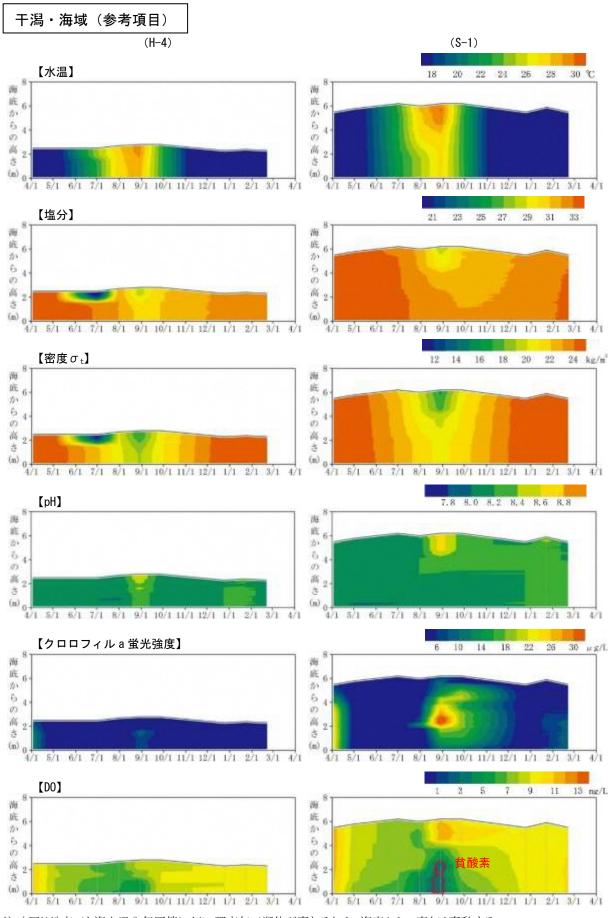


水質の経年変化

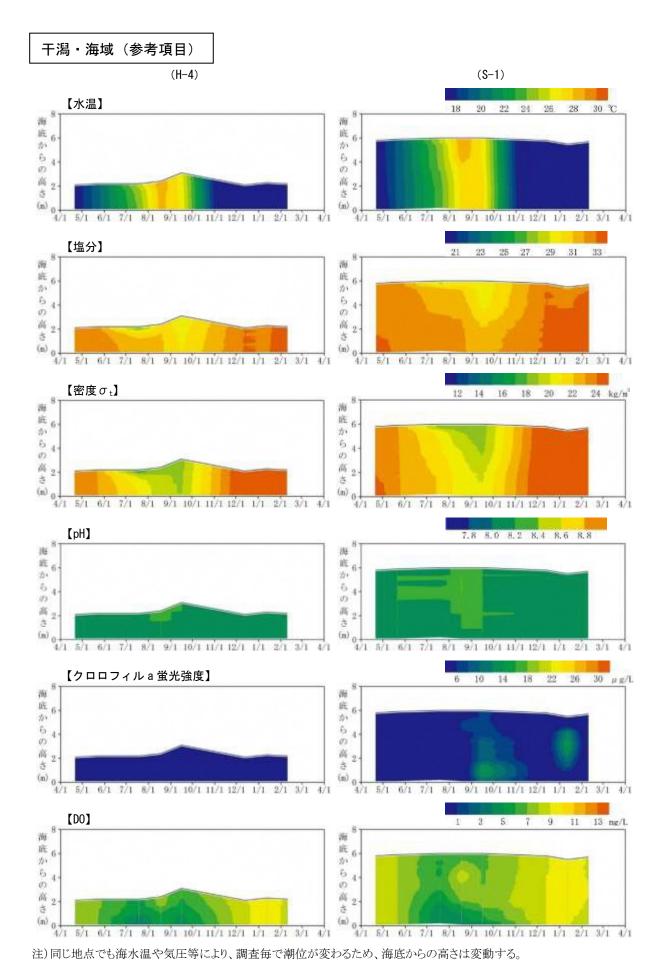
干潟・海域(評価項目)



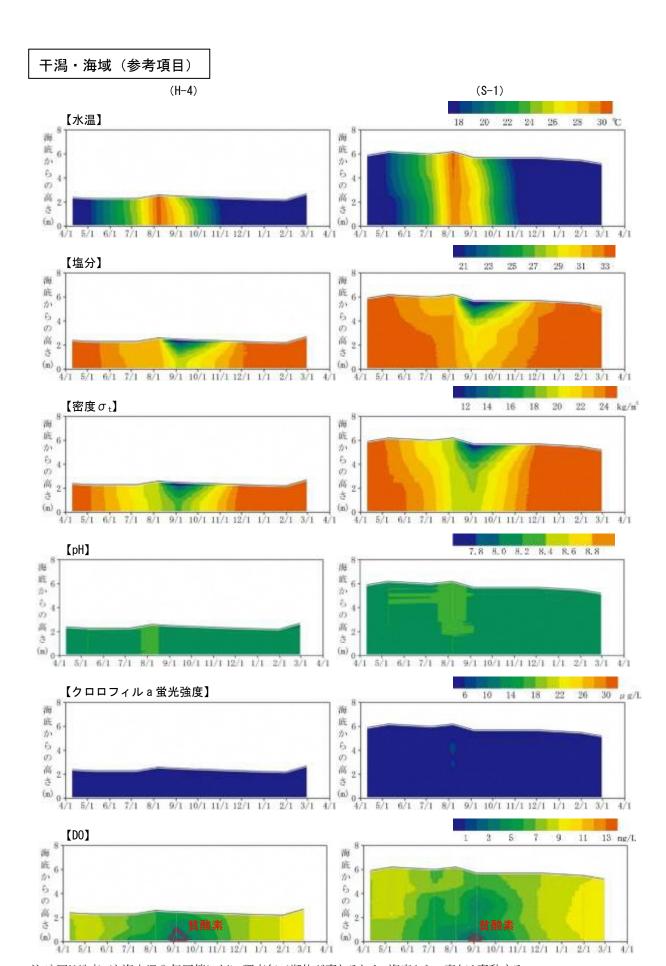



水質の経年変化

干潟・海域(参考項目)

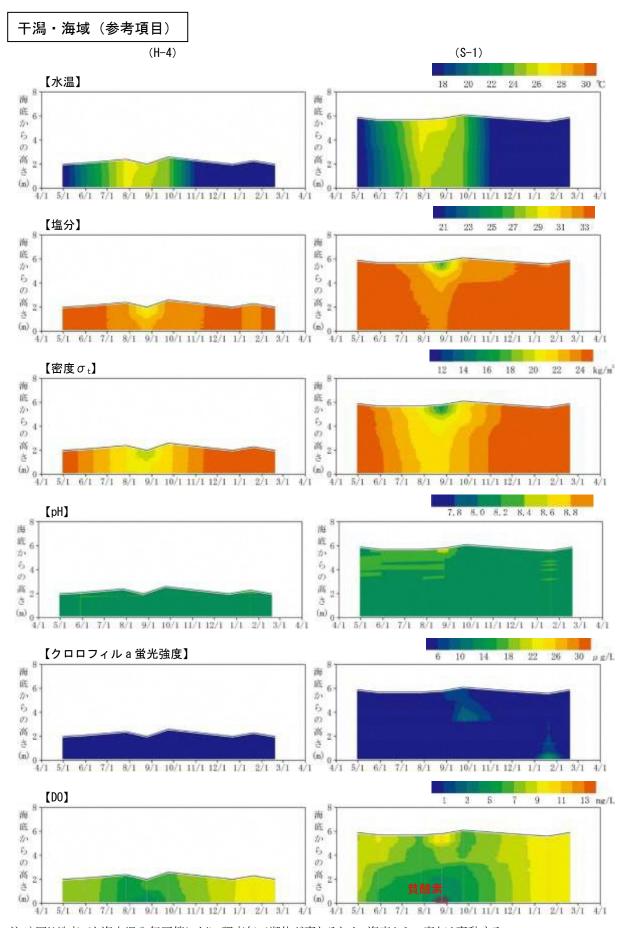


水質の経年変化

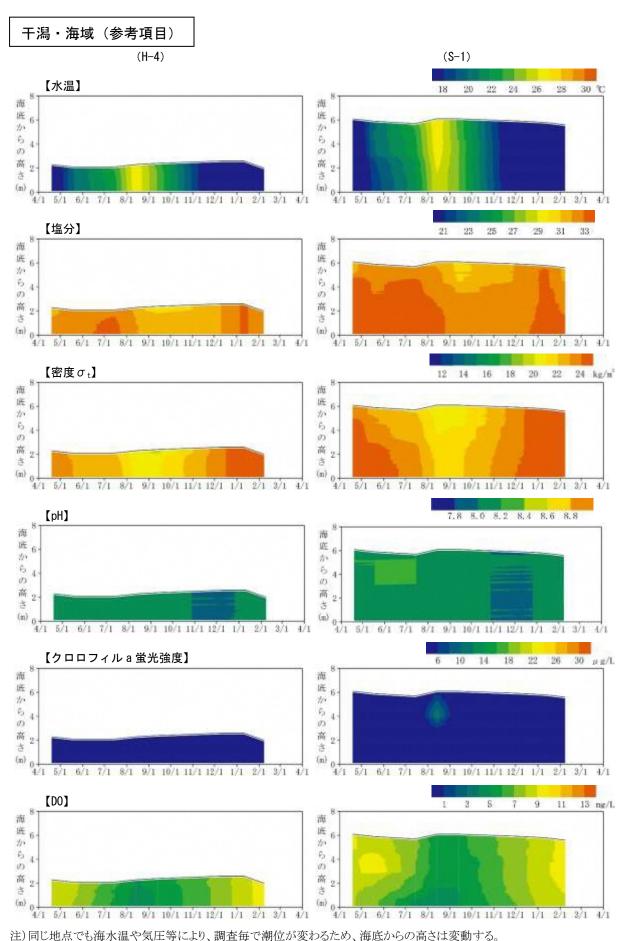


注1)同じ地点でも海水温や気圧等により、調査毎で潮位が変わるため、海底からの高さは変動する。 注2)図中の赤線の枠内は貧酸素の目安である3.6mg/L以下を意味する。

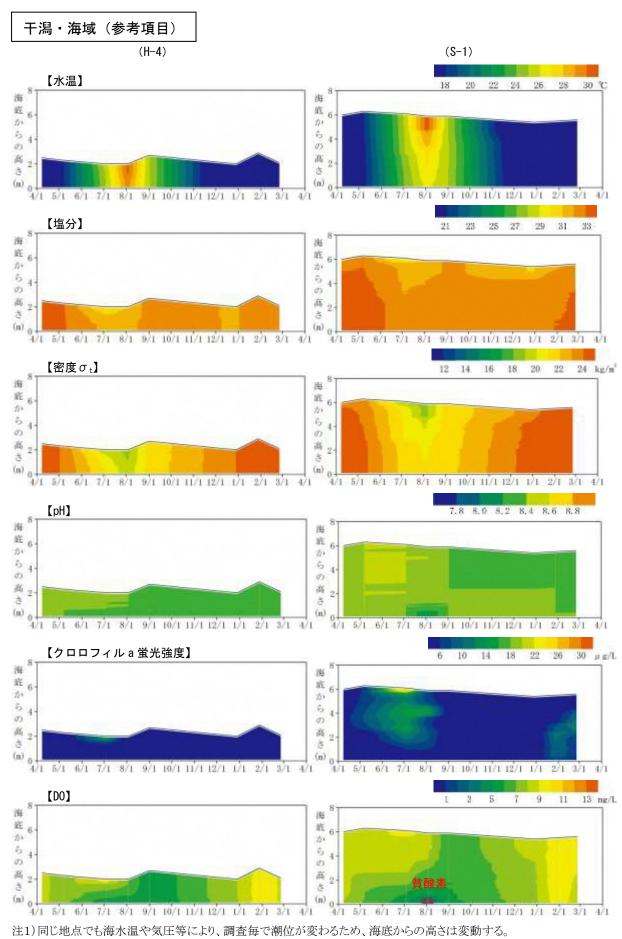
水質の鉛直分布の季節変化 (平成 23 年度)



水質の鉛直分布の季節変化 (平成 24 年度)


注1)同じ地点でも海水温や気圧等により、調査毎で潮位が変わるため、海底からの高さは変動する。 注2)図中の赤線の枠内は貧酸素の目安である3.6mg/L以下を意味する。

水質の鉛直分布の季節変化(平成25年度)


注1)同じ地点でも海水温や気圧等により、調査毎で潮位が変わるため、海底からの高さは変動する。 注2)図中の赤線の枠内は貧酸素の目安である3.6mg/L以下を意味する。

水質の鉛直分布の季節変化 (平成 26 年度)

地点でも借水価で式圧寺により、調査再で側位が変わるため、、個底からい高さは変動する。

水質の鉛直分布の季節変化 (平成 27 年度)

注2)図中の赤線の枠内は貧酸素の目安である3.6mg/L以下を意味する。

水質の鉛直分布の季節変化 (平成28年度)

<参考: 今津湾周辺で発生した赤潮(平成28年度)>

整理	発	生	其	月 間	発 生	海域	赤海	朝構成プランクト	ン	最高細胞数	最大面積
番号	発生日	\sim	終息日	日 数	海域区分	詳細	綱	属	種	(cells/m1)	$(k m^2)$
F0-04	5/11	~	5/24	(14日間)	九州北部(福岡湾)	福岡湾奥部・ 湾央部・湾口 の一部	ラフィド藻	Heterosigma	akashiwo	351,000	不明
F0-07	6/1			福岡湾奥部・ 湾央部・湾口	珪藻	Skeletonema	spp.	63,000	不明		
F0-07	0/1		0/21	(21日間)	(福岡湾)	の一部	上深	Chaetoceros	spp.	16, 800	不明
F0-10	7/8	~	7/10	(3日間)		福岡湾奥部・ 湾央部・湾口 の一部	珪藻	Chaetoceros	spp.	5, 550	不明
F0-15	8/19	~	8/20	(2日間)		福岡湾湾央部 の一部	渦鞭毛藻	Heterocapsa	sp.	5, 100	不明

出典:「九州海域の赤潮」水産庁九州漁業調整事務所

注)表中の赤潮は、今津湾周辺(能古島・小戸間以西、今津・能古島間以南の海域)が発生域に含まれているものを抽出 した。

流入河川

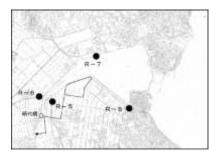
<変動範囲>

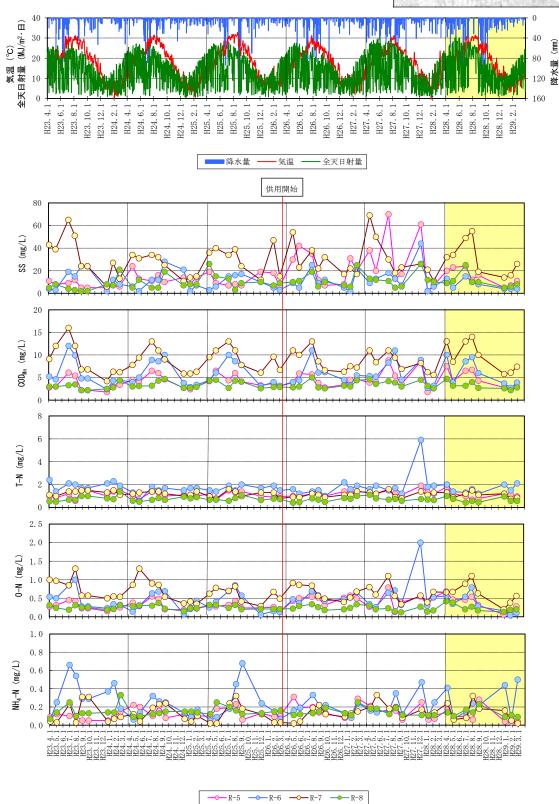
- ・平成 28 年度における流入河川(瑞梅寺川を除く周船寺川、弁天川、水崎川、江の口川)では、SS、COD_{Mn}、T-N、NO₂-N、T-P、PO₄-P、TOC は供用前と概ね同程度の変動範囲で推移した。周船寺川(R-5)では、4月に O-N が供用前の最大値より高かった。調査前日 (4月7日)に 37.5mm の降雨(数値表 p.10)がみられており、COD や TOC も供用前の変動範囲内にはあるものの高くなっていることから、降雨に伴う有機物の流下の影響と考えられる。また、8月にクロロフィル a が供用前の最大値より高かった。7月14日から調査当日(8月3日)にかけて降水量が少なかった(数値表 p.10)ことによる河川水の滞留に伴い、内部生産量が増加したためと考えられる。周船寺川以外では、弁天川(R-6)で1月に O-Nが、水崎川(R-7)で12月に O-Nが、江の口川(R-8)で9月に NO₃-N、12月に O-Nが供用前の最小値より低かったほかは供用前の変動範囲内で推移した。
- ・平成 28 年度の変動範囲は、SS が $4\sim55 \text{mg/L}$ 、 COD_{Mn} が $2.2\sim14 \text{ mg/L}$ 、T-N が $0.43\sim2.1 \text{mg/L}$ 、O-N が $0.04\sim1.1 \text{mg/L}$ 、 NH_4-N が 0.02 未満 $\sim0.50 \text{mg/L}$ 、 NO_2-N が 0.02 未満 $\sim0.04 \text{mg/L}$ 、 NO_3-N が $0.05\sim1.5 \text{mg/L}$ 、T-P が $0.045\sim0.95 \text{mg/L}$ 、 PO_4-P が $0.014\sim0.67 \text{mg/L}$ 、TOC が $1.1\sim7.1 \text{mg/L}$ 、 PO_4-P が PO_4-P か PO_4-P が PO_4-P が PO_4-P が PO_4-P が PO_4-P が PO_4-P か PO_4-P が PO_4-P か O

<季節変化>

- ・各地点ともに、4月に調査日前の降雨に伴う有機物の流下の影響と考えられる COD_{Mn} や O-N、T-P、TOC の上昇がみられた。
- ・周船寺川 (R-5)や弁天川 (R-6)及び水崎川 (R-7)では、7月~8月に河川水が滞留して内部生産量が増加したことによると考えられる COD_{Mn} やTOC、クロロフィル aの上昇がみられた。また、供用前と同様に、T-Pが7月から8月にかけて高かった。上昇した項目は夏季以降に減少し、その後は顕著な上昇はみられなかった。

<経年変化>

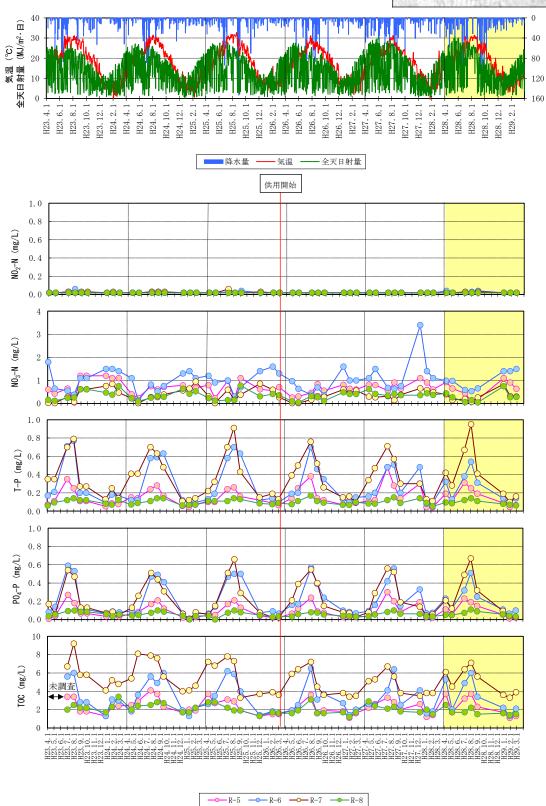

- ・河川水が滞留しやすい弁天川(R-6)や水崎川(R-7)では、内部生産量が増加する 4 月から 9 月にかけて COD_{Mn} や TOC、クロロフィル a が高く、水温が低下する 12 月~2 月に低くなる傾向が、供用前から供用後の平成 28 年度までみられている。
- •T-P は、周船寺川(R-5)や弁天川(R-6)及び水崎川(R-7)において、7月~9月にかけて高く、12月以降は低くなる一定の傾向で、供用前から供用後の平成28年度まで推移している。
- ・瑞梅寺川を除く流入河川では、季節変化はあるものの、平均的には全ての評価項目において、供用前から 供用後の平成28年度まで横ばいで推移している。


供用前と供用後の平成 26~27 年度、平成 28 年度の変動範囲 (流入河川)

	百日	地点	供用前	供月	月後
	項目 	地点	(H23∼H25)	H26∼H27	H28
		R-5	5~24	2~70	5~24
	SS (mg/L)	R-6	2~28	2~44	4~15
	OO (mg/L)	R-7	6~65	11~69	14~55
		R-8	2~26	5∼26	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		R-5	1.8~6.5	1.8~8.8	
	COD _{Mn} (mg/L)	R-6	2.4~12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.7~10
	COD _{Mn} (mg/L)	R-7	4.2~16	5.6∼13	
		R-8	$2.2 \sim 4.7$		2.2~4.7
		R-5	$0.57 \sim 1.5$	1.0 ~1.9	0.68~1.8
	T-N (mg/L)	R-6	$0.57\sim2.4$		1.2~2.1
	1 1 (mg/ b)	R-7	$0.78 \sim 1.6$	0.80~1.6	0.75~1.5
		R-8	$0.50 \sim 1.4$	0.42~1.1	0.43~1.0
		R-5	$0.14 \sim 0.55$	0.13~0.79	0.06~0.68
	0-N (mg/L)	R-6	0.06~1.0	0.26~2.0	0.04~0.79
	0 IV (mg/ L)	R-7	0.29~1.3	0.34~1.1	0.20~1.1
		R-8	$0.15 \sim 0.37$	0.12~0.34	0.13~0.42
		R-5	$0.05 \sim 0.23$	0.06~0.31	0.03~0.28
	$\mathrm{NH_4-N}$ (mg/L)	R-6	$0.05 \sim 0.68$		
	11114 11 (IIIS/ L)	R-7	$\langle 0.02 \sim 0.32$	0.02~0.33	<0.02∼0.32
		R-8	$0.07 \sim 0.33$	0.11~0.25	0.09~0.23
評		R-5	<0.02	<0.02	<0.02∼0.02
価	NO_2 -N (mg/L)	R-6	<0.02∼0.06	***************************************	
項	1102 11 (mg/ L)	R-7	$\langle 0.02 \sim 0.06$	<0.02~0.02	<0.02∼0.03
🗏		R-8	<0.02	<0.02	<0.02
	$\mathrm{NO_{3}\text{-}N}$ (mg/L)	R-5	$0.05 \sim 1.2$	0.26~1.1	0.08~1.1
		R-6	0.13~1.8	0.35~3.4	
		R-7	$\langle 0.02 \sim 0.95$	<0.02∼0.66	$0.07 \sim 0.84$
		R-8	$0.09 \sim 0.78$		
		R-5	$0.044 \sim 0.35$		
	T-P (mg/L)	R-6	$0.093 \sim 0.77$		
	(R-7	$0.11 \sim 0.91$	$0.096 \sim 0.76$	
		R-8	$0.062 \sim 0.14$		
		R-5	$0.008 \sim 0.27$		
	PO_4 -P (mg/L)	R-6	$0.005 \sim 0.59$		
	4 (0,)	R-7	0.003~0.66		
		R-8	$0.001 \sim 0.10$		
		R-5	1.3~4.1		
	TOC (mg/L)	R-6	1.3~6.2		
	<u> </u>	R-7	3.3~9.2		
		R-8	1.3~3.4		
		R-5	1.1~18		
	クロロフィルa(μg/L)	R-6	1.7~31		
		R-7	1.0~60		
\vdash		R-8	0.6~12		
		R-5	6.8~33.0	***************************************	
	水温 (℃)	R-6	7.4~32.6	***************************************	
		R-7	4.9~32.6		
参		R-8	5.7~32.6		
参考		R-5	24~12000		
項	塩化物イオン(mg/L)	R-6	18~3100		
目目		R-7	22~5000		
-		R-8	1900~16000		
		R-5	21.7~4040		
	EC (mS/m)	R-6	23.3~986		
		R-7	24. 2~1510		
\Box		R-8	642~4080		

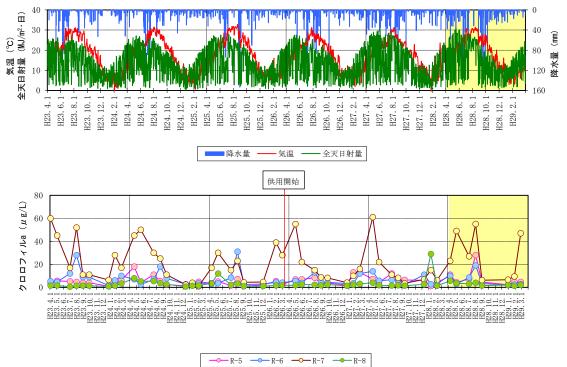
注)供用前の変動範囲は平成23~25年度における最小値~最大値の範囲を示している。 供用後の平成26~27年度の変動範囲は両年度の最小値~最大値の範囲を示している。

流入河川 (評価項目)

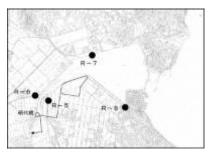


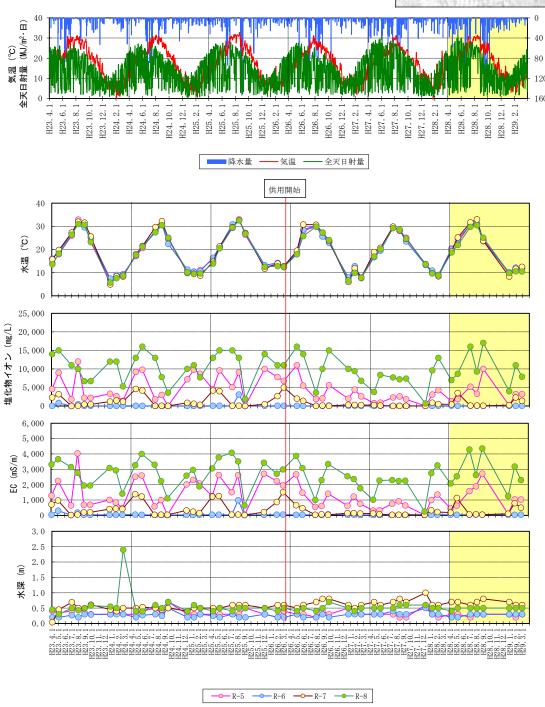
水質の経年変化

流入河川 (評価項目)


降水量 (mm)

水質の経年変化


流入河川 (評価項目)



水質の経年変化

流入河川 (参考項目)

降水量 (mm)

水質の経年変化

モニタリング調査結果の評価

- ・今津干潟および周辺の水質へ影響を与える流入河川(瑞梅寺川(放流河川)を除く)では、平成28年度において、気象要因により一部の河川・項目で供用前の変動範囲より高くなっていたものの、平成28年度における水質の季節変化の特徴は供用前と概ね同様の傾向を示しており、経年変化では供用前から供用後の平成28年度にかけて横ばいで推移していた。
- ・処理水の放流先である今津干潟および周辺に位置するH-4とS-1では、両地点とも7月にクロロフィルaが供用前の変動範囲より高くなっていたが、これは博多湾の広い範囲で発生していた赤潮の影響と考えられる。
- ・H-4とS-1では、いずれの地点も平成 28 年度における水質の季節変化の特徴は供用前と概ね同様の傾向を示しており、経年変化では供用前から供用後の平成 28 年度にかけて横ばいで推移していた。
- ・調査結果に基づき、平成 28 年度において、処理水の放流先である今津干潟および周辺の水質への影響は小さかったと考えられる。

環境監視項目5:今津干潟および周辺の底質

調査の目的

・放流先である今津干潟および周辺の底質への影響を監視する。

調査期間

・供用前と供用後

調査項目

- ・土砂、浮泥等の堆積状況 評価項目は、干潟の標高とした。
- ・今津干潟および今津湾の底質
- ①評価項目は、底泥有機物(CODsed、強熱減量(Ig-Loss)、含水比、TOC)、栄養塩類(T-N、T-P)、全硫化物、粒度組成とした。
- ②参考項目は、泥温、泥色、試料写真とした。

調査方法

•調査地点:

<堆積状況>瑞梅寺川河口(R-4)、

今津干潟内のカブトガニの産卵場および幼生の生育場(H-2、H-5)

<底質調查>瑞梅寺川河口(R-4)、

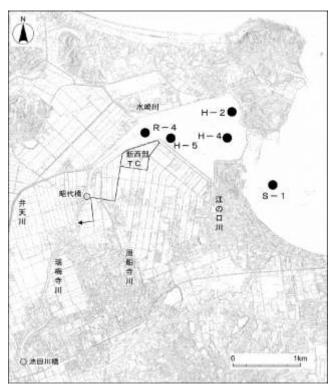
今津干潟(H-2、H-4、H-5)、 今津湾(S-1)

•調査日:

<堆積状況>R-4 平成28年5月7日、

9月1日、

11月28日、


平成 29 年 1 月 28 日

H-2とH-5: 平成 28 年 9 月 1 日、

平成 29 年 1 月 28 日

<底質調査>平成 28 年 8 月 31 日 \sim 9 月1日、

平成 29 年 1 月 28 日

調査地点

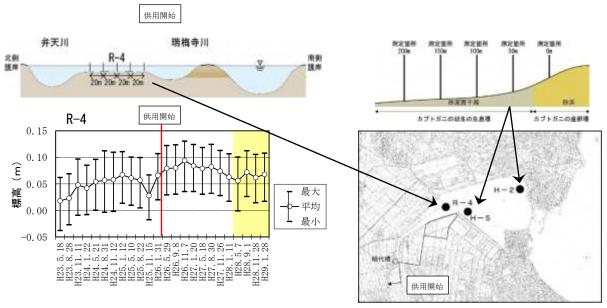
- ・堆積状況の測定方法:トータルステーションを用いて、R-4では調査初期(平成23年5月18日)において、河川流下方向に対して垂直な断面測線上に20m間隔で設定した5箇所の地盤高を測量した。H-2とH-5では、R-4と同様、調査初期(平成23年8月28日)において、汀線に対して垂直な断面測線上に50m間隔で設定した5箇所の地盤高を測量した。
- ・試料の採取方法:海底表面から 5cm の深さの底泥を、S-1、H-4ではスミス・マッキンタイヤ型採泥器で、R-4、H-2、H-5ではコドラートを用いて採取した。

・底質の分析方法、調査頻度、調査日:下表のとおり

項目	分析方法	調査頻度	調査日
COD_{sed}	底質調査法(H24 環水大水企発 12075002 号) Ⅱ 4.7	年2回	平成 28 年 8 月 31 日
強熱減量(Ig-Loss)	底質調査法(H24 環水大水企発 12075002 号) Ⅱ 4. 2		~9月1日、
含水比	底質調査法(H24 環水大水企発 12075002 号) Ⅱ 4. 1		平成 29 年 1 月 28 日
	に基づく		
TOC	底質調査法(H24 環水大水企発 12075002 号) Ⅱ 4. 10		
T-N	底質調査法(H24 環水大水企発 12075002 号) Ⅱ 4. 8.1		
T-P	底質調査法(H24 環水大水企発 12075002 号) Ⅱ 4. 9		
全硫化物	底質調査法(H24 環水大水企発 12075002 号) Ⅱ 4. 6		
粒度組成	JIS A 1204 -2009-		

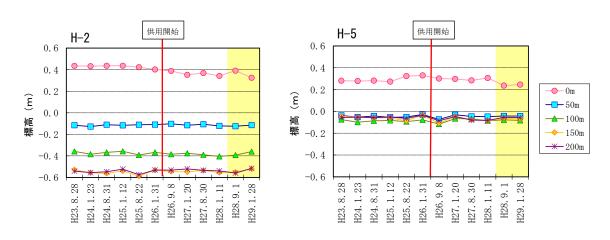
注)表中の分析方法は、最新の分析方法の表記名を記載した。

調査結果のとりまとめ方法


- ・今津干潟および周辺の底質について、事前調査結果による供用前の変動範囲との比較^{※1}、経年変化傾向の 特徴の整理^{※2}を行い、供用後の評価を行った。
 - ※1 変動範囲とは、供用前や供用後などの各期間における調査結果の最小値から最大値までの範囲と定義する。 事前調査結果(供用前)による変動範囲との比較では、当該年度の調査結果が変動範囲内にある場合には「供用前の変動範囲内にある」とした。また、変動範囲を外れた場合でもその値が最小値・最大値から 10%以内であれば「供用前と同程度の変動範囲内にある」とし、それ以上外れた場合には「最小値より低い」あるいは「最大値より高い」とした。
 - ※2 経年変化傾向については、各項目において有意性を検定し、「横ばい傾向」、あるいは「増加・減少傾向(上昇・低下傾向)」を判断した。

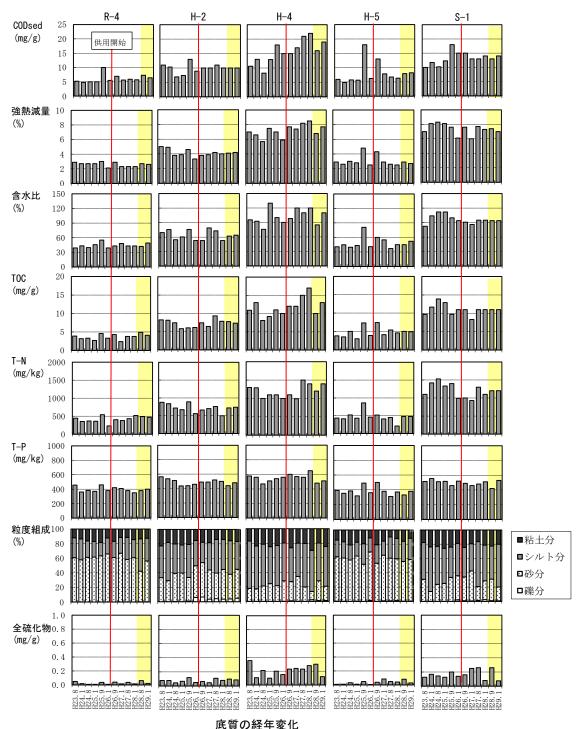
調査結果

堆積状況


- ・瑞梅寺川河口のR-4における標高は、供用前から供用後の平成26年度にかけて、上昇した後、平成27年度に低下し、平成28年度は供用前の平成24年度と同程度の値で推移した。
- ・H-2における標高は、カブトガニの産卵場である 0m 地点において、供用前の平成 25 年度から供用後の平成 28 年度にかけて低下している。同地点では平成 21 年度から平成 22 年度にかけて産卵場整備のための養浜が行われ、その後の平成 23 年度まで砂の流出が確認されている**ことから、砂の流出が引き続き生じて標高が低下傾向にあった可能性がある。その他の位置では概ね横ばいで推移している。
- ・H-5における標高は、いずれの位置でも概ね横ばいで推移している。

※「今津干潟保全協議会事業報告」 福岡市ホームページ

注)図中の平均・最大・最小は5箇所の平均値・最大値・最小値を意味する。


堆積厚の経年変化

堆積厚の経年変化

底質

- ・平成 28 年度は、H-2とH-4では、いずれの項目も供用前と同程度の変動範囲内にあった。R-4、H-5、S-1では、夏季に全硫化物が供用前と比べて高かったものの、冬季には供用前と同程度、あるいは低い値まで低下しており、経年的な上昇はみられない。
- ・供用前と同様に、泥分(粘土分+シルト分)が高いH-4やS-1で CODsed や強熱減量などの有機物や 全硫化物、T-N、T-Pが他の地点と比べて高かった。
- ・H-4では平成 27 年度に河川からの有機物などの供給の影響と考えられる CODsed や強熱減量、TOC、T-N の上昇がみられていたが、平成 28 年度は供用前と同程度の変動範囲内にあった。
- ・その他の地点では、H-5で全硫化物が微増傾向にあるほかは、供用前から供用後の平成28年度にかけて横ばい傾向にある。

5.貝の柱牛炙11

モニタリング調査結果の評価

- ・処理水の放流先である瑞梅寺川河口に位置するR-4やカブトガニの産卵場および幼生の生育場である 今津干潟のH-2と H-5では、いずれの地点も堆積厚の経年変化傾向が供用後の平成 26 年度以降に 変化する状況はみられなかった。
- ・処理水の放流先である今津干潟および周辺では、平成28年度において、一部の地点で夏季に全硫化物が 供用前の変動範囲より高くなっていたが、冬季には供用前の変動範囲まで低下しており、一時的な上昇であった。

経年変化では、一部の地点で一時的な増加がみられたものの、供用前から供用後の平成 28 年度にかけて横ばいで推移していた。

・調査結果に基づき、平成 28 年度において、処理水の放流先である今津干潟および周辺の底質への影響は小さかったと考えられる。

環境監視項目6:今津干潟および周辺の生態系

調査の目的

・放流先である今津干潟および周辺の生態系への影響を監視する。

調査期間

・供用前と供用後

調査項目

塩沼地植生(植生、分布範囲)、

ベントス(種数、個体数、湿重量、貴重種の有無)、 指標生物(トビハゼ、ヤマトオサガニの分布範囲)、 藻場(アマモの分布範囲、繁茂状況)

調査方法

- ・調査地点または調査範囲:
 - <塩沼地植生調査>

瑞梅寺川河口(調査地点図の青色の破線内)。

<ベントス調査>

瑞梅寺川河口(R-4)、今津干潟(H-1~H-4)、 今津湾(S-1)。

<指標生物調査>

瑞梅寺川河口および今津干潟

(調査地点図の赤線内)。

<藻場調査>

浜崎今津漁港から福岡県水産海洋技術センター前、宝島南側(調査地点図の緑色の破線内)。 藻場を利用する生物については、密なアマモが広がっている2箇所(F-1、F-2)。

調査日:

<塩沼地植生調査>平成28年8月26日

< ベントス調査> 平成28年5月6~7日、8月31日~9月1日、11月14日、平成29年1月28日 (貴重種確認:8月31日~9月1日)

- <指標生物調査> 平成28年5月21日、8月18日
- < 藻場調査> 平成28年5月9~12日、7月11~12日、19~20日

•調査方法:

<塩沼地植生および指標生物調査>現地踏査による観察。

<ベントス調査>S-1、H-4ではスミス・マッキンタイヤ型採泥器、R-4、H-1、H-2、H-3ではコドラートを用いる定量調査。また、R-4、H-1、H-2、H-3の周辺域および瑞梅寺川河口のヨシ原周辺において、目視観察により貴重種の有無を確認した。

< 藻場調査>水中における写真やビデオ撮影による定性調査。また、刺網とマルチネットを用いて藻場周辺における魚類や稚仔魚の利用状況を確認した。

調査結果のとりまとめ方法

- ・今津干潟および周辺の生態系について、事前調査結果による供用前の変動範囲との比較^{※1}、経年変化傾向の特徴の整理^{※2}を行い、供用後の評価を行った。
 - ※1 変動範囲とは、供用前や供用後などの各期間における調査結果の最小値から最大値までの範囲と定義する。 事前調査結果(供用前)による変動範囲との比較では、当該年度の調査結果が変動範囲内にある場合には「供用前の変動範囲内にある」とした。また、変動範囲を外れた場合でもその値が最小値・最大値から 10%以内であれば「供用前と同程度の変動範囲内にある」とし、それ以上外れた場合には「最小値より低い」あるいは「最大値より高い」とした。
 - ※2 経年変化傾向については、各項目において有意性を検定し、「横ばい傾向」、あるいは「増加・減少傾向(上昇・ 低下傾向)」を判断した。

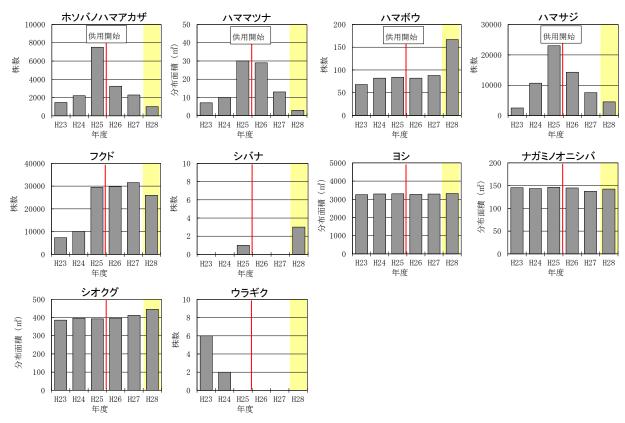
調査地点

調査結果

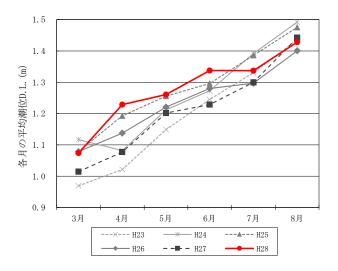
塩沼地植生

<供用前との比較>

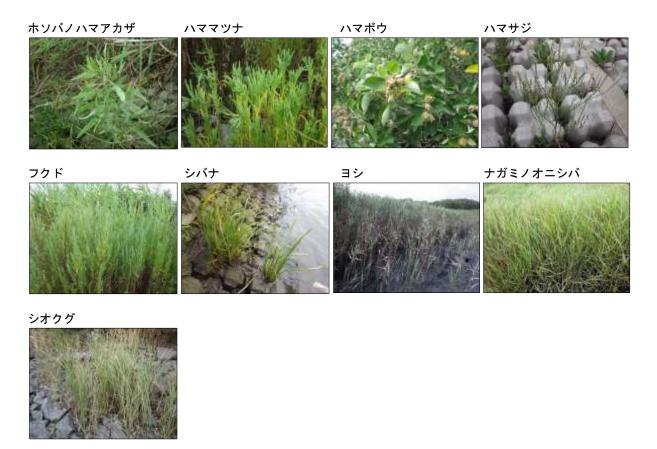
- ・平成 28 年度の調査では、供用前に確認された 10 種のうち、9 種の塩沼地植物が確認された。平成 28 年度 に確認されなかったウラギクは供用前の平成 25 年度以降、確認されていない。
- ・瑞梅寺川の左岸部と弁天川には、供用前と同様、ヨシが広く分布しており、このヨシ群落周辺にハマボウやシ オクグ、ハマサジ、フクドなどが点在していた。そのほか、周船寺川の合流部付近及び合流部より上流側の瑞 梅寺川護岸には、ホソバノハマアカザ、ハマサジ、フクド、シオクグなどが広く点在していた。
- ・供用前の平成 25 年度に瑞梅寺川左岸部で確認されたシバナは、平成 28 年度には周船寺川合流部より上流の瑞梅寺川護岸で確認された。
- ・株数または分布面積をみると、確認された9種のうち、ハマサジ、フクド、ヨシ、ナガミノオニシバ、シオクグの5 種はいずれも供用前と同程度の変動範囲内にあった。
- ・ホソバノハマアカザは、広い範囲で株数が減少し、供用前より少なかった。他種との競合や、4~6 月の平均潮位の上昇による枯死・流出が原因として考えられる。
- ・ハママツナは、周船寺川の合流部より下流側の護岸で分布が減少し、供用前より少なかった。生育初期である 4~6 月の平均潮位が高かったことや降水量が多かったこと(p.15)で、発芽して間もない株が例年よりも長い時間塩水に冠水して、枯死しやすくなっていたり、潮流や出水により流出しやすくなっていた可能性がある。
- ・ハマボウは、供用前と同様に護岸に点在していたが、平成 28 年度には、瑞梅寺川の左岸で発芽して間もない実生株が多く確認されたこと等により、株数が供用前より多かった。
- ・シバナは、周辺地域から流れてきた種子が定着して、生長したと考えられる株が確認されたことにより、株数が供用前より多かった。


<経年変化>

- ・フクド、ヨシ、ナガミノオニシバ、シオクグは、供用前から供用後の平成 28 年度にかけて、株数または分布面積に大きな変化はみられない。
- ・ホソバノハマアカザ、ハママツナ、ハマサジは、供用前の平成 23 年度から 25 年度まで増加した後、平成 28 年度まで減少している。護岸工事により基盤が新しくなって一時的に定着した後、他種との競合や潮位の上昇により減少してきていると考えられる。
- ・シバナは、供用前の平成 25 年度に 1 株確認された後、平成 27 年度まで確認されていなかったが、平成 28 年度に再び確認された。


確認された塩沼地植物の株数または分布面積

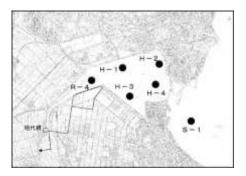
				株数または分布面積				
No.	科	種	単位	供用前	供用後			
				(H23∼H25)	H26∼H27	H28		
1	アカザ科	ホソバノハマアカザ	株	1460~7513	2281~3245	1015		
2)	ハママツナ	m²	7.0~30	13~29	2.9		
3	アオイ科	ハマボウ	株	68~84	82~88	167		
4	イソマツ科	ハマサジ	株	2519~23029	7571~14310	4509		
5	キク科	フクド	株	7331~29440	$29771\sim 31580$	25992		
6	7 7 17	ウラギク	株	0~6	0	0		
7	シバナ科	シバナ	株	0~1	0	3		
8	イネ科	ョシ	m²	3253~3301	3271~3290	3318		
9	11 17 17	ナガミノオニシバ	m²	143. 5~146. 5	137.5~145.0	142. 5		
10	カヤツリグサ科	シオクグ	m²	385.5~396.5	397.0~412.0	445.0		


注)供用前の変動範囲は平成23~25年度における最小値~最大値の範囲を示している。 供用後の平成26~27年度の変動範囲は両年度の最小値~最大値の範囲を示している。

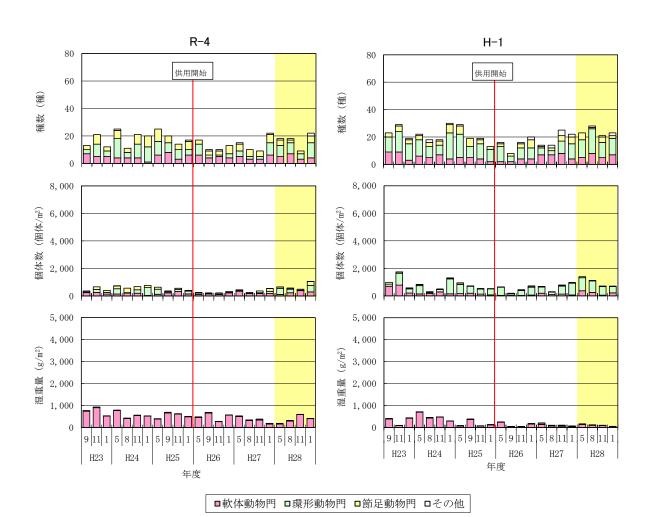
株数または分布面積の経年変化

出典:「博多験潮所験潮データ統計資料」第七管区海上保安本部海洋情報部ホームページ 博多湾における3月~8月の各月の平均潮位(平成23年~28年)

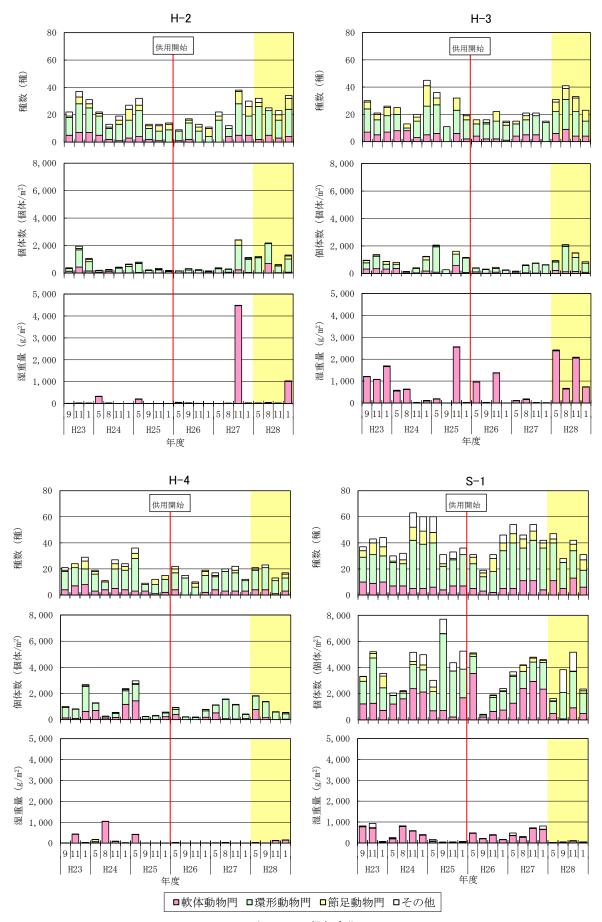
今津干潟の塩沼地植物


ベントス

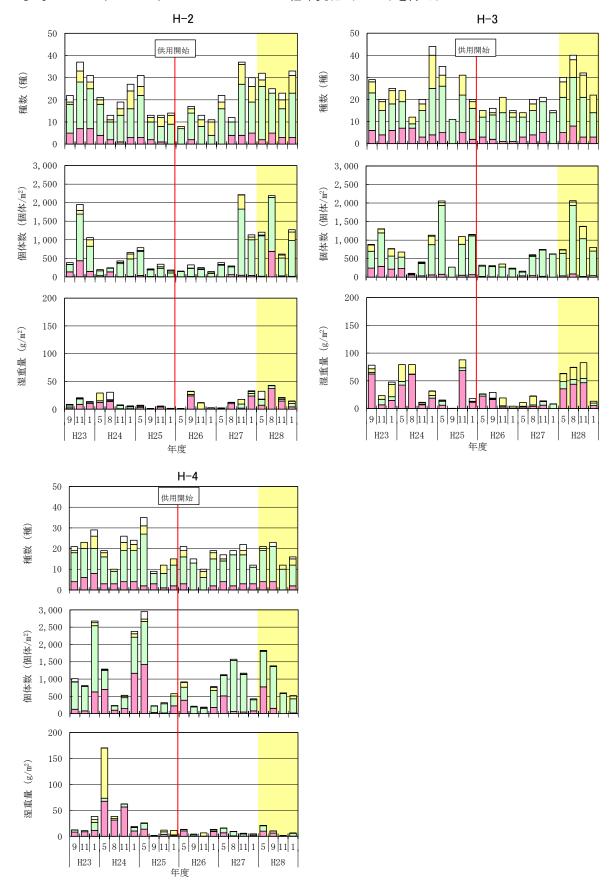
<供用前との比較>


- ・平成 28 年度における種数や個体数、湿重量は、いずれの地点も供用前と概ね同程度の変動範囲内にあった。
- ・個体数は、供用前と同様に、海域のS-1が他の地点と比べて多かった。個体数からみた優占種は、瑞梅寺川河口のR-4ではヘナタリガイ(腹足類)が、今津干潟のH-1では Heteromastus sp. (ゴカイ類)が、H-2では Tharyx sp. (ゴカイ類)が、H-3では Cossura sp. (ゴカイ類)、H-4ではシズクガイ(二枚貝類)が、今津湾のS-1では Phoronis sp. (ホウキムシ類)であった。
- ・湿重量は、供用前と同様に、H-3が他の地点と比べて多かった。湿重量からみた優占種は、R-4ではヘナタリガイ(腹足類)が、H-1ではオキシジミ(二枚貝類)が、H-2、H-3、H-4ではマガキ(二枚貝類)が、S-1ではイヨスダレガイ(二枚貝類)であった。

<経年変化>


- ・瑞梅寺川河口のR-4では、供用前からゴカイ類などの環形動物の種数が春季(5月)に増加し、高水温期の 夏季(8月、9月)に減少する傾向がみられ、供用後も概ね同様の傾向で推移している。経年的には種数・個体 数に増減傾向はみられていない。湿重量は供用開始前の平成23年度から供用後の平成28年度までの期間でみるとやや減少傾向にあるが、供用後の期間(平成26年度~平成28年度)では横ばいで推移している。
- ・今津干潟のH-1では、種数・個体数に経年的な増減傾向はみられていない。湿重量は、R-4と同様に供用開始前の平成23年度から供用後の平成28年度までの期間でみるとやや減少傾向にあるが、供用後の期間(平成26年度~平成28年度)では横ばいで推移している。
- ・今津干潟のH-2、H-3、H-4では、経年的に湿重量の変動が大きい。これは1個体あたりの湿重量が比較的重いマガキが点在しており、マガキの採取数により湿重量が大きく変化するためである。マガキを除くと供用前から供用後の平成28年度まで横ばいで推移している。
- ・H-2、H-3、H-4では、平成25年9月に種数が減少し、平成26年度以降も平成25年9月以前と比べて若干少ない傾向にあったが、平成28年度はいずれの調査においても供用前の変動範囲内にあった。
- ・今津湾のS-1は、他の地点と比べて経年的に種数、個体数が多いが、平成26年9月にゴカイ類や二枚貝類などが減少している。平成26年8月に降雨に伴う出水が続いたことで(p.15)、塩分が低下し、種数、個体数の減少に繋がった可能性がある。その後、平成27年度には供用前の変動範囲内まで回復していた。また、平成28年度に軟体動物の個体数や湿重量が減少していた。これは、個体数変動が大きいホトトギスガイやシズクガイが少なかったことによるものである。これらの種は繁殖の成功により個体数や湿重量が一時的に増加する特性を持つため、水質等の環境変化によらない自然変動であると考えられる。また、平成28年度の主な種はPhoronis sp.やイヨスダレガイであり、これらの種は供用開始前から概ね継続して出現している。

調査地点



ベントスの経年変化

ベントスの経年変化

<参考-H-2、H-3、H-4のベントスの経年変化(マガキを除く)>

□軟体動物門 □環形動物門 □節足動物門 □その他 ベントス (マガキを除く) の経年変化 (H-2、H-3、H-4)

ベントスの主な出現種 (上位3種)

<個体数>

、									
地点	供用前		供用後						
地点	(H23∼H25	5)	H26∼H27	7	H28				
R-4	ヘナタリガイ	(汽水·海水性)	ヘナタリガイ	(汽水·海水性)	ヘナタリガイ	(汽水・海水性)			
	ムロミスナウミナナフシ	(汽水·海水性)	ヤマトオサガニ	(汽水・海水性)	Scolelepis sp.	(海水性)			
	Heteromastus sp.	(海水性)	オキシジミ	(汽水·海水性)	オキシジミ	(汽水・海水性)			
H-1	Heteromastus sp.	(海水性)	Heteromastus sp.	(海水性)	Heteromastus sp.	(海水性)			
	テリザクラガイ	(汽水・海水性)	テリザクラガイ	(汽水・海水性)	Scolelepis spp.	(海水性)			
	ウミゴマツボ (汽水・海水性)		ダルマゴカイ	レマゴカイ (海水性) Coss		(海水性)			
H-2	Heteromastus sp.	(海水性)	Tharyx sp.	(海水性)	Tharyx sp.	(海水性)			
	ミズヒキゴカイ	(海水性)	Heteromastus sp.	(海水性)	コケゴカイ	(汽水・海水性)			
	ウミゴマツボ	(汽水・海水性)	イトエラスピオ	(海水性)	Heteromastus sp.	(海水性)			
H-3	マガキ	(汽水・海水性)	マガキ	(汽水·海水性)	Cossura sp.	(海水性)			
	カタマガリギボシイソメ	(海水性)	イチョウシラトリガイ	(汽水・海水性)	ダルマゴカイ	(海水性)			
	ソデナガスピオ	(海水性)	タカノケフサイソガニ	(汽水・海水性)	Haploscoloplos sp.	(海水性)			
H-4	シズクガイ	(海水性)	Cossura sp.	(海水性)	シズクガイ	(海水性)			
	カタマガリギボシイソメ	(海水性)	シズクガイ	(海水性)	Cossura sp.	(海水性)			
	ソデナガスピオ	(海水性)	Tharyx sp.	(海水性)	Tharyx sp.	(海水性)			
S-1	ホトトギスガイ	(海水性)	ホトトギスガイ	(海水性)	Phoronis sp.	(海水性)			
	Polydora sp.	(海水性)	<i>Polydora</i> sp.	(海水性)	シノブハネエラスピオ	(海水性)			
	シノブハネエラスピオ	(海水性)	カタマガリギボシイソメ	(海水性)	シズクガイ	(海水性)			

<湿重量>

11b .H=	供用前		供用後						
地点	(H23∼H25)		H26∼H2	7	H28				
R-4	オキシジミ	(汽水·海水性)	オキシジミ	(汽水·海水性)	ヘナタリガイ	(汽水・海水性)			
	ヘナタリガイ	(汽水・海水性)	ヘナタリガイ	(汽水・海水性)	オキシジミ	(海水性)			
	ヤマトオサガニ	(汽水·海水性)	ヤマトオサガニ	(汽水·海水性)	ヤマトオサガニ	(汽水・海水性)			
H-1	オキシジミ	(汽水·海水性)	オキシジミ	(汽水·海水性)	オキシジミ	(海水性)			
	イチョウシラトリガイ	(汽水・海水性)	イチョウシラトリガイ	(汽水・海水性)	カワアイガイ	(汽水・海水性)			
	テリザクラガイ	(汽水·海水性)	カワアイガイ	(汽水・海水性)	イチョウシラトリガイ	(汽水・海水性)			
H-2	マガキ(汽水・海		マガキ	(汽水・海水性)	マガキ	(汽水・海水性)			
	アメリカフジツボ	(海水性)	アサリ	(汽水・海水性)	ホトトギスガイ	(海水性)			
	クサフグ ^{※1} (汽水·海水性)		アナジャコ	(海水性)	アサリ	(汽水・海水性)			
	ウメノハナガイ	(汽水·海水性)							
H-3	マガキ	(汽水·海水性)	マガキ	(汽水・海水性)	マガキ	(汽水・海水性)			
	ウネナシトマヤガイ	(汽水·海水性)	ウネナシトマヤガイ	(汽水・海水性)	ウネナシトマヤガイ	(汽水・海水性)			
	オキシジミ	(汽水·海水性)	ヤマトオサガニ	(汽水・海水性)	イチョウシラトリガイ	(汽水・海水性)			
H-4	マガキ※2	(汽水・海水性)	マガキ ^{※2}	(汽水·海水性)	マガキ※2	(汽水・海水性)			
	アラムシロガイ	(海水性)	シズクガイ	(海水性)	シズクガイ	(海水性)			
	イシガニ	(海水性)	ムシロガイ	(海水性)	ダルマゴカイ	(海水性)			
	シズクガイ	(海水性)	チロリ	(海水性)	Thelepus sp.	(海水性)			
S-1	ホトトギスガイ	(海水性)	ホトトギスガイ	(海水性)	イヨスダレガイ	(海水性)			
	モミジガイ	(海水性)	サルボウガイ	(汽水・海水性)	シノブハネエラスピオ	(海水性)			
	ナガオタケフシゴカイ	(海水性)	チロリ	(海水性)	カガミガイ	(海水性)			

- 注1)供用前は平成23~25年度における個体数、湿重量それぞれの合計値が多い上位3種を表示した。
- 供用後の平成26~27年度は両年度の、平成28年度は当該年度の個体数、湿重量それぞれの合計値が多い上位3種を表示した。 注2)表中の括弧内は種別の生息環境特性である。既存文献に記載されている生息環境より、汽水・海水のいずれにも生息する種を「汽水・海水性」、海水に生息する種を「海水性」と記載した。
- ※1 クサフグは偶発的に確認されたと考えられる種であるため、上位4番目も記載した。
- ※2 マガキは着底個体ではないと考えられたため、上位4番目も記載した。

<供用前との比較(貴重種)>

- ・平成 28 年度のベントス調査及び貴重種の生息状況調査において、確認された貴重種は 37 種であり、供用前と同程度の変動範囲内にあった。
- ・供用前に出現頻度が多かった貴重種は、供用後の平成28年度にも出現していた。
- ・瑞梅寺川河口付近で、環境省レッドリストに絶滅危惧 I 類で指定されているイチョウシラトリガイや絶滅危惧 II 類に指定されているカワアイガイなどの貝類のほか、同リストの絶滅危惧 II 類に指定されている甲殻類のハクセンシオマネキが、供用前と同様に、供用後も確認された。
- ・今津干潟では主に貝類が確認されたほか、魚類のトビハゼや甲殻類のタイワンヒライソモドキも確認された。

<経年変化(貴重種)>

- ・ウミゴマツボは供用前の平成 23 年度に多くの数が確認されたものの、供用前の平成 24 年度以降減少し、出現の有無の変動が大きい状況にある。ムシロガイ、ヒメアシハラガニは、供用前に確認された後、供用後の平成 26 年度や 27 年度に確認されない年があったが、平成 28 年度には再び確認されており、出現の有無の変動が大きい状況にある。
- ・サクラガイは、供用前から供用後の平成27年度まで確認されていたが、平成28年度には確認されなかった。 供用前から出現頻度や出現数が少ない種であり(数値表 p.53)、経年的な減少ではないと考えられるが、今 後の調査で出現の動向を注視する必要がある。

【参考】貴重種の確認個体数の経年変動の特徴

	種名	個体数の経年変動の特徴						
	ウミニナ	時折確認され、確認個体数は少ない。						
	イボウミニナ	時折確認され、確認個体数は少ない。						
	ヘナタリガイ	供用前から供用後の平成28年度まで4季を通じてほぼ確認され、確認個体数は多い。						
	カワアイガイ	供用前は時折確認され、確認個体数は少なかったが、供用後には継続して確認され、個体数が増えている。						
	サザナミツボ	一度確認されたのみである。						
	ウミゴマツボ	平成23年度に多くの個体数が確認されたが、それ以降は確認個体数が減少し、時折 みられるのみである。						
	ムシロガイ	時折確認され、確認個体数は少ない。						
貝類	コメツブツララガイ	平成23年度に多くの個体数が確認されたが、それ以降は確認個体数が減少し、時折 みられるのみである。						
754	ヒメシオガマ近似種	時折確認され、確認個体数は少ない。						
	サビシラトリガイ	一度確認されたのみである。						
	イチョウシラトリガイ	供用前から供用後の平成28年度まで確認され、確認個体数は少ない。						
	テリザクラガイ	供用前から供用後の平成28年度まで確認され、確認個体数は多い。						
	モモノハナガイ	時折確認され、確認個体数は少ない。						
	ユウシオガイ	時折確認され、確認個体数は少ない。						
	ウズザクラガイ	一度確認されたのみである。						
	サクラガイ	時折確認され、確認個体数は少ない。						
	ウネナシトマヤガイ	平成23年度から平成28年度までは4季を通じてほぼ確認され、個体数変動が大きい。						
コ゛カイ類	ツバサゴカイ	時折確認され、確認個体数は少ない。						
	カブトガニ	一度確認されたのみである。						
甲	ハシボソテッポウエビ	一度確認されたのみである。						
殼	ヒメムツアシガニ	一度確認されたのみである。						
類	ムツハアリアケガニ	供用前から供用後の平成28年度まで確認され、確認個体数は少ない。						
他	トリウミアカイソモドキ	時折確認され、確認個体数は少ない。						
	ウチノミヤドリカニダマシ	一度確認されたのみである。						
在	タビラクチ	時折確認され、確認個体数は少ない。						
魚類	チワラスボ	一度確認されたのみである。						
754	マサゴハゼ	時折確認され、確認個体数は少ない。						

注)表中の種は4季調査で確認された種のみを掲載しており、4季調査の個体数から経年的な特徴を種ごとに整理した。

貴重種の確認状況

	貴重種カテゴリー 供用前 供用後											
		環境省 水産		福岡県		H23 H24 H25			H26	H26 H27 H28		
			水産庁		阿 朱	(参考)	1124	1120	1120	1127	1120	
1	ツボミガイ	準絶滅危惧(NT)		準絶滅危惧				•			•	
2	イシマキガイ		減少種		(絶滅危惧Ⅱ類)			_	•	•	•	
3		準絶滅危惧(NT)		準絶滅危惧		***************************************	ļ	•				
	ウミニナ	準絶滅危惧(NT)	減少傾向	準絶滅危惧			0	•	•	0	•	
5		絶滅危惧Ⅱ類(VU)		絶滅危惧IB類		0		•	0•	0•	•	
6	フトヘナタリガイ	準絶滅危惧(NT)		準絶滅危惧			•	•	•	•	•	
7	ヘナタリガイ	準絶滅危惧(NT)		準絶滅危惧		0	0	0	0•	0•	0	
8	カワアイガイ	絶滅危惧Ⅱ類(VU)		絶滅危惧Ⅱ類		0	•	0	0	0	0	
9	サザナミツボ	準絶滅危惧(NT)		準絶滅危惧		******************	ļ			0		
	ワカウラツボ	絶滅危惧Ⅱ類(VU)		準絶滅危惧	(3#+45 \4 47.10 \			•		•	•	
	クリイロカワザンショウガイ	準絶滅危惧(NT)		準絶滅危惧	(準絶滅危惧)		•	•	•	•	•	
	ツブカワザンショウガイ	準絶滅危惧(NT)		情報不足	(絶滅危惧Ⅱ類)						•	
	カワザンショウガイ	36-65 NA 77-18 (N 177)		W-64 \A 7.10	(準絶滅危惧)			•	•			
14	ヒナタムシヤドリカワザンショウ	準絶滅危惧(NT)		準絶滅危惧							•	
15	アズキカワザンショウガイ	絶滅危惧Ⅱ類(VU)		絶滅危惧Ⅱ類			•					
16 17	ウミゴマツボ アカニシ	準絶滅危惧(NT)	減少種			0	0	0		0	0	
		%性 (*た 3-4 たこ kH (*a 175*)	减少性				_					
	ムシロガイ コメツブツララガイ	準絶滅危惧(NT) 絶滅危惧Ⅱ類(VU)	***************************************				0	0	0		0	
19 20	ナラビオカミミガイ			絶滅危惧Ⅱ類	(絶滅危惧 I 類)	0	0	•			0	
21	オカミミガイ	絶滅危惧Ⅱ類(VU) 絶滅危惧Ⅱ類(VU)	危急種		(絶滅危惧Ⅱ類)			•	•	•	•	
22	<u> </u>	絶滅危惧Ⅱ類(VU) 絶滅危惧Ⅱ類(VU)	凡忌性	絶滅危惧Ⅱ類	(絶滅危惧 I 類)			•		_		
~~~~	スミノエガキ	絶滅危惧Ⅱ類(VU)			(昭)姚/巴 共 1 )與/				•			
24		栏(队)已[共Ⅱ 類(VU)		絶滅危惧Ⅱ類 情報不足		0	-	0		0	0	
000000000	ニッポンマメアゲマキガイ	準絶滅危惧(NT)		準絶滅危惧				•				
26		準絶滅危惧(NT)		华 他 滅 危 惧		0		_				
27	イチョウシラトリガイ	絶滅危惧 I 類(CR+EN)		半起級危惧 I B類		0	0	0	0	0	0	
28	テリザクラガイ	絶滅危惧Ⅱ類(VU)		絶滅危惧Ⅱ類		0	0	0	00	0	00	
29		準絶滅危惧(NT)		準絶滅危惧		0	0					
30		準絶滅危惧(NT)		準絶滅危惧			0	0	0	0	•	
000000000	ウズザクラガイ	準絶滅危惧(NT)		情報不足				0			0	
	サクラガイ	準絶滅危惧(NT)		準絶滅危惧		0	0	0	0	0		
~~~~	ウネナシトマヤガイ	準絶滅危惧(NT)		T-1600/E1X		0	0	0	0	•	0	
	ヤマトシジミ	準絶滅危惧(NT)		準絶滅危惧							•	
35	オキナガイ属の一種	絶滅危惧Ⅱ類(VU)		情報不足		***************************************					•	
00000000	ツバサゴカイ	100//00/10/10/		絶滅危惧Ⅱ類			0		0	0	0	
000000000	カブトガニ	絶滅危惧 I 類(CR+EN)	絶滅危惧種	<u> </u>		0	•	•	•	•	•	
38	ハシボソテッポウエビ			絶滅危惧Ⅱ類				0				
39	ヒメムツアシガニ			準絶滅危惧			0					
40	ムツハアリアケガニ				(準絶滅危惧)	0	0	0	0	0	0	
41	オサガニ			準絶滅危惧	(準絶滅危惧)	•	•		•	•	•	
42		絶滅危惧Ⅱ類(VU)	希少種	絶滅危惧 I B類	(絶滅危惧)		•		•			
43	***************************************	絶滅危惧Ⅱ類(VU)		絶滅危惧Ⅱ類	(準絶滅危惧)		•	•	•	•	•	
44	ハマガニ			準絶滅危惧	(準絶滅危惧)		•	•	•	•	•	
45	ヒメアシハラガニ			準絶滅危惧	(準絶滅危惧)	•	•	•			•	
	ベンケイガニ			準絶滅危惧	(絶滅危惧)			•	•	•		
47	トリウミアカイソモドキ			情報不足			0				0	
48	モクズガニ		減少傾向					•				
49	タイワンヒライソモドキ			情報不足	(準絶滅危惧)						•	
50	ウチノミヤドリカニダマシ			絶滅危惧 I B類							0	
51	タビラクチ	絶滅危惧Ⅱ類(VU)	減少種	絶滅危惧Ⅱ類	(絶滅危惧Ⅱ類)		•	0	•	0	0	
52	トビハゼ	準絶滅危惧(NT)	減少種	絶滅危惧Ⅱ類	(絶滅危惧 I B類)			•		•	•	
53	チワラスボ	絶滅危惧 I B類(EN)		絶滅危惧Ⅱ類					0			
54	マサゴハゼ	絶滅危惧Ⅱ類(VU)		準絶滅危惧						0	0	
						14種	29種	33種	27種	29種	37種	

注)○:4 季調査、●:貴重種調査(8、9月)

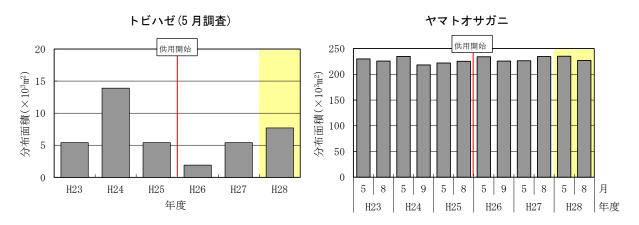
貴重種カテゴリーの出典:

【環境省】「環境省レッドリスト」(環境省:2012)

【水産庁】「日本の希少な野生水生生物に関するデータブック 水産庁編」(社団法人 日本水産保護協会:1998)

【福岡県】「福岡県の希少野生生物ー福岡県レッドデータブック 2014-」(福岡県:2014)

括弧内は、「福岡県の希少野生生物ー福岡県レッドデータブック 2001-」(福岡県:2001)のカテゴリーを示す。

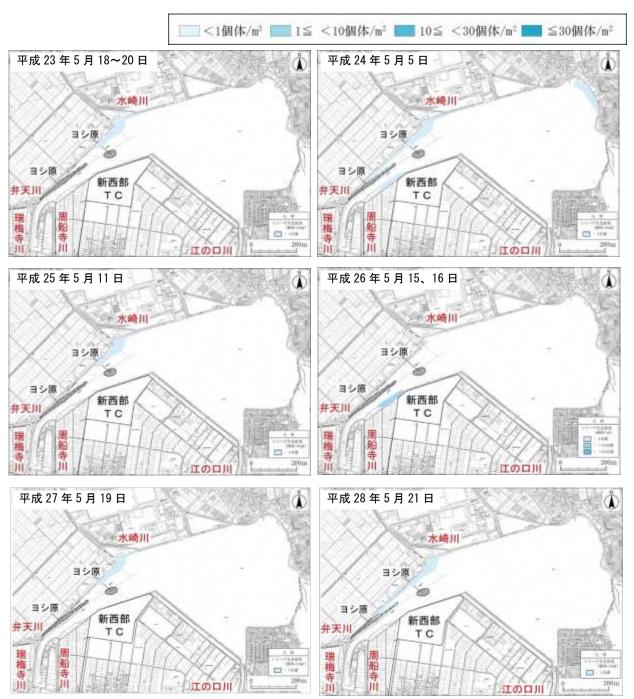

指標生物※

<供用前との比較>

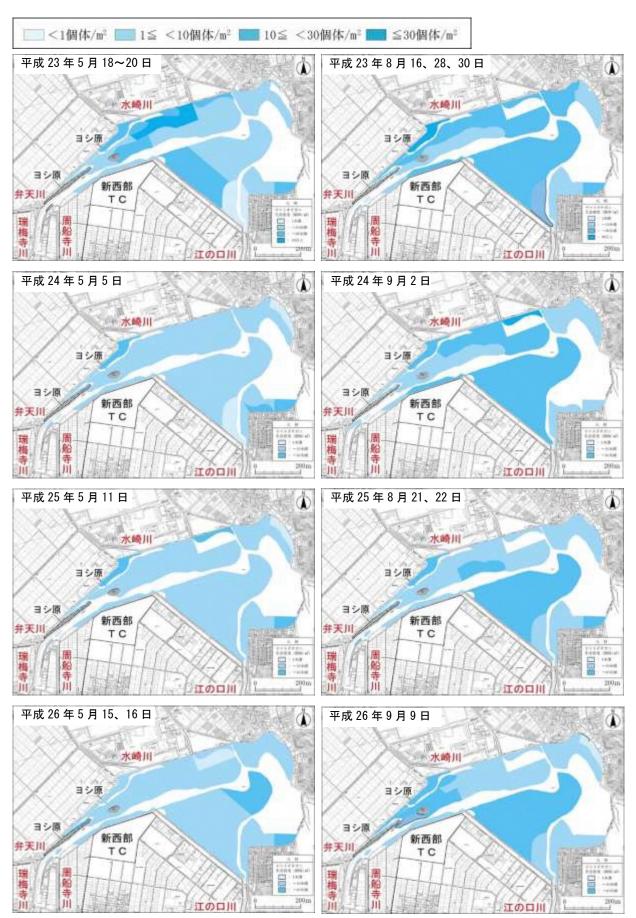
- ・供用後におけるトビハゼは、5 月に弁天川河口において生息が確認され、分布面積は供用前の変動範囲内にあった。
- ・ヤマトオサガニは、供用前と同様に、瑞梅寺川から今津干潟の澪筋部を除くほぼ全域に広く分布しており、特に8月調査時の弁天川河口において個体数が多かった。分布面積は、供用前の変動範囲内にあった。

<経年変化>

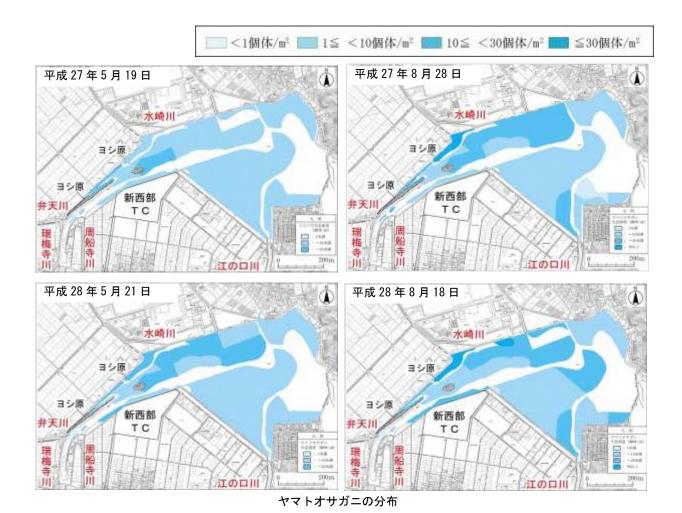
- ・トビハゼの分布面積は年による変動が大きいが、供用前から供用後の平成 28 年度まで、弁天川河口など、毎年概ね同じ地点で確認されていることから、生息環境に大きな変化は生じていないと考えられる。
- ・ヤマトオサガニの分布面積は供用前から供用後の平成 28 年度まで、横ばいで推移しており、分布傾向も毎年概ね同様である。

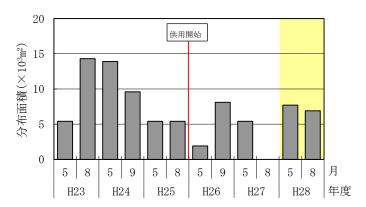


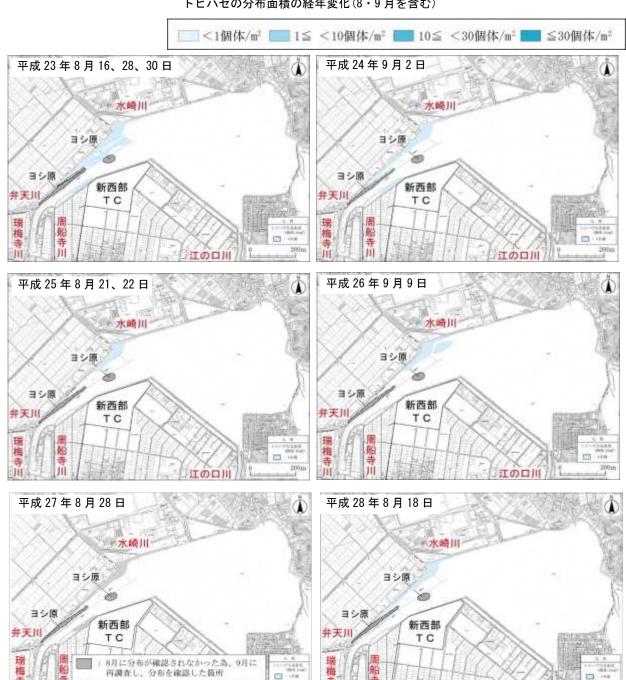
指標生物の分布面積の経年変化



今津干潟で確認された指標生物


[※] 今津干潟において面的な生息分布が把握できる魚類・甲殻類のうち、富栄養化等が生じた場合に、今津干潟全体の環境変化が生息分布の変化により指標できる生物として、トビハゼ(魚類)とヤマトオサガニ(甲殻類)を選定した。


トビハゼの分布(5月)

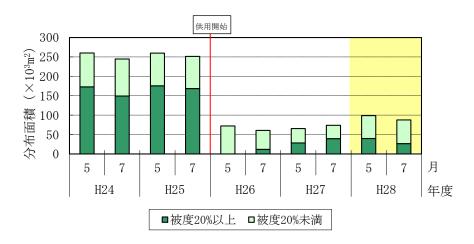

ヤマトオサガニの分布

<参考-8・9 月の調査を含めたトビハゼの分布状況>

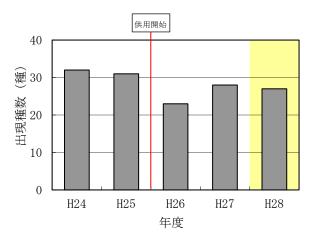
トビハゼの分布面積の経年変化(8・9月を含む)

トビハゼの分布(8・9月)

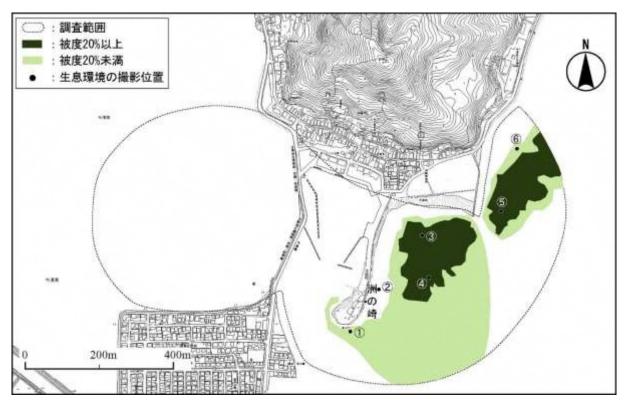
I I DOIN


<余白>

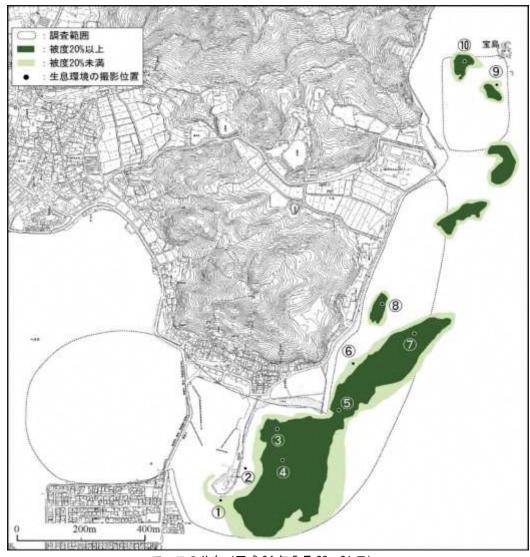
藻場(アマモ場)


- ・アマモは、供用後において、分布面積が大きく減少した。これは、平成 25 年度夏季の高水温の影響でアマモの生息環境が悪化したためと考えられる。なお、別の調査においても*、平成 25 年度の越夏後、アマモの枝長が伸び始める 2 月、3 月において、これまでと比べて枝長が短いことが明らかとなっており、平成 26 年度におけるアマモの分布面積の減少は、夏季の高水温の影響と考えられる。
- ・平成 26 年度から平成 28 年 7 月にかけてのアマモの分布状況および分布面積をみると、アマモの分布面積が広がってきていることから、アマモの分布は回復傾向にあると考えられる。
- ・刺網とマルチネットを用いて藻場周辺における魚類や稚仔魚の利用状況を確認したところ、平成28年度は5月と7月で計27種の魚類やイカ・タコ類の利用が確認された。出現種数は供用前(平成24年度:32種、平成25年度:31種)に比べて少ないが、アマモの減少が確認された平成26年度(23種)に比べて多かった。供用前に確認され、平成28年度に確認されていない種をみると、アマモ場を利用する種が多いことから、供用前と比べてアマモの分布が狭まったことが、出現種数に影響していると考えられる。

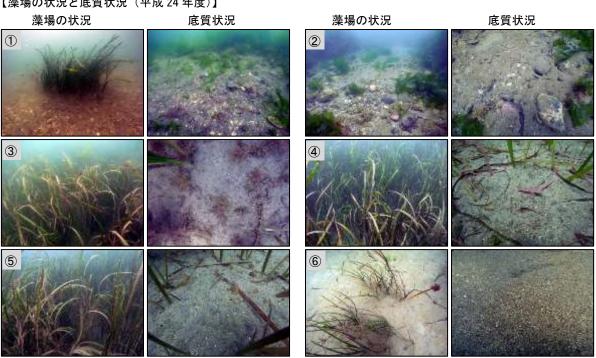
※「平成25年度博多湾の環境保全に向けた講じた措置およびモニタリング調査結果」

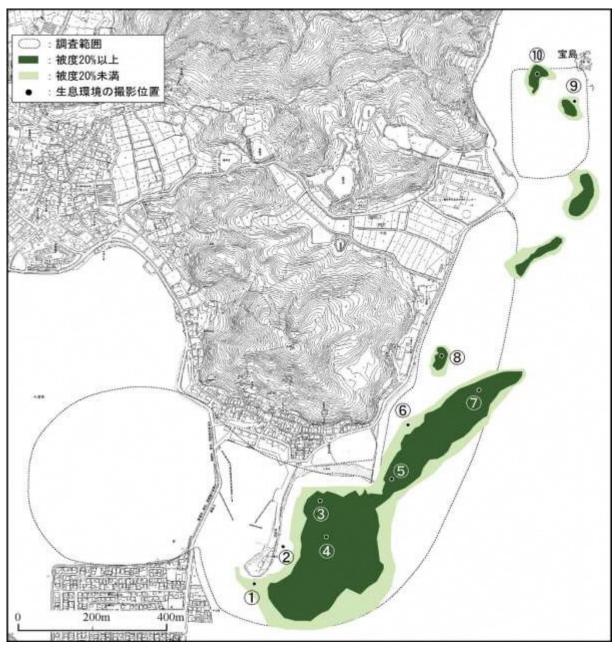

平成26年8月、福岡市環境局ホームページ

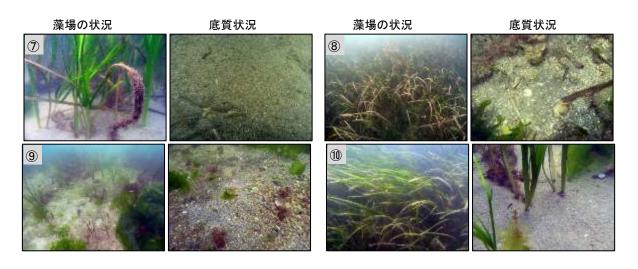
アマモの分布面積の経年変化

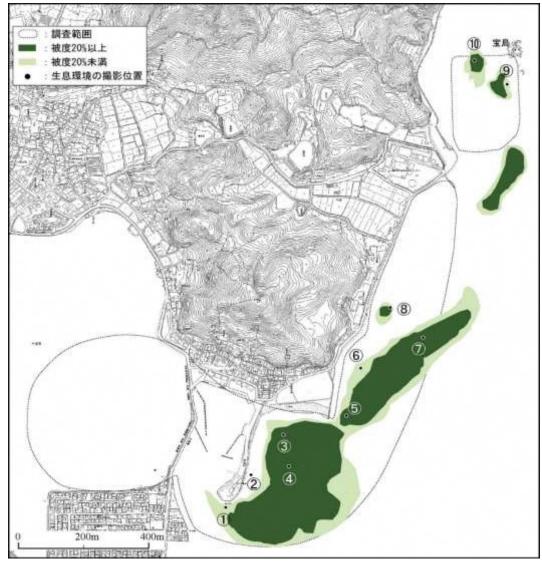


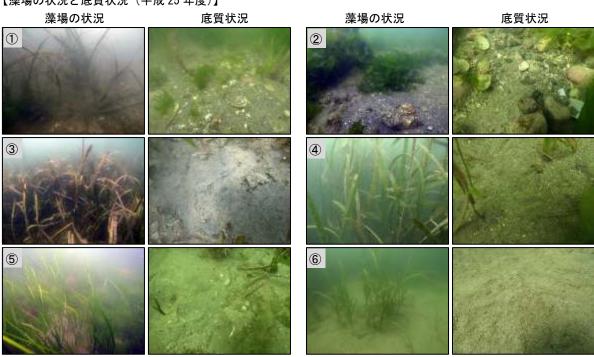
アマモ場周辺で確認された生物の出現種数の経年変化

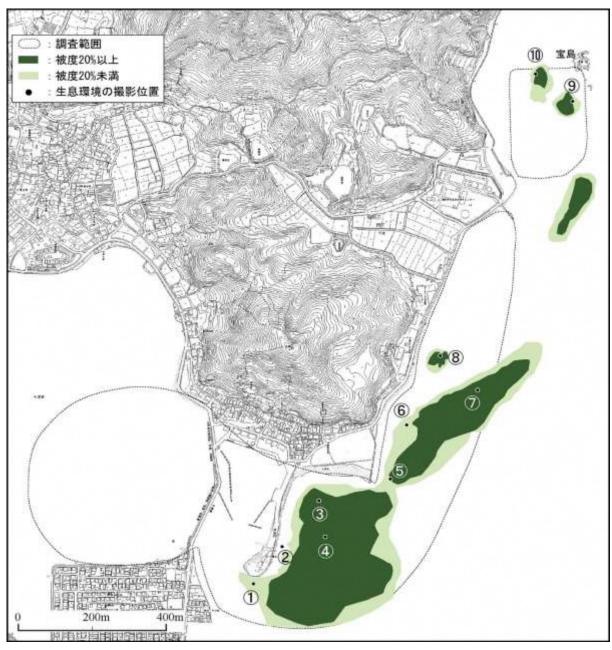

アマモの分布 (平成 23 年 6 月 20~21 日)

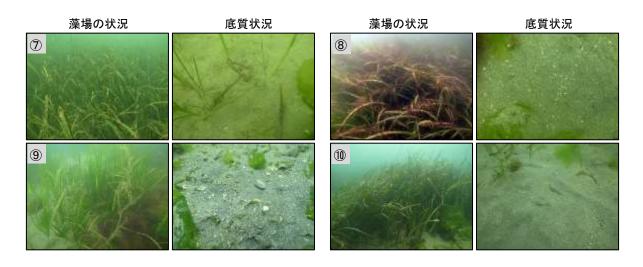

[藻場の状況と底質状況 (平成 23 年度)] 藻場の状況 底質状況 ② ③ ⑤ ⑤

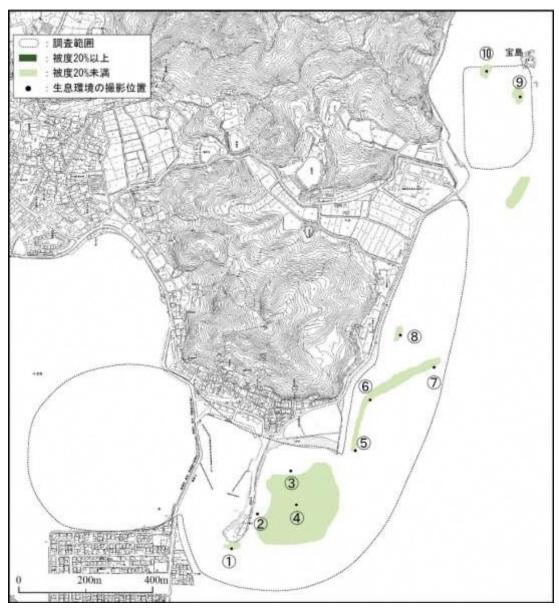

アマモの分布 (平成 24 年 5 月 28~31 日)

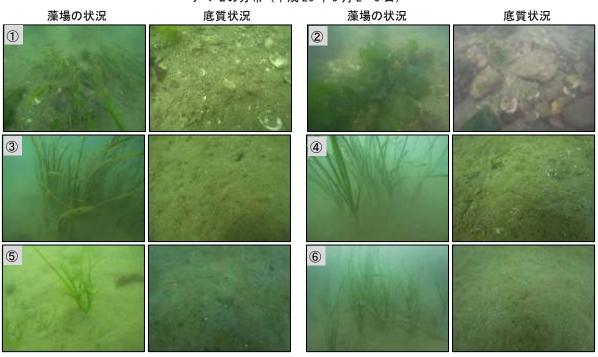

【藻場の状況と底質状況(平成24年度)】

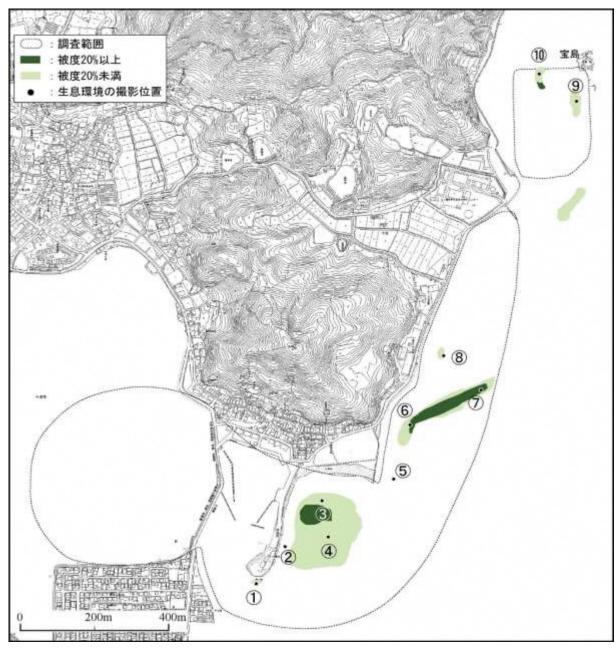

アマモの分布 (平成 24 年 7 月 5~8 日)

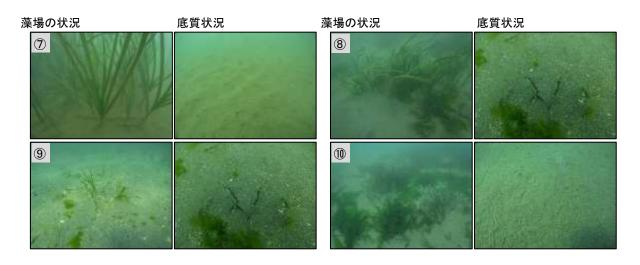


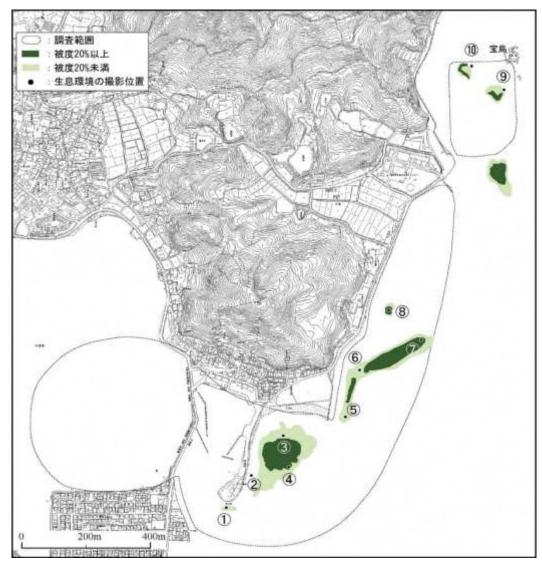

アマモの分布 (平成 25 年 5 月 21~22 日、27~28 日)

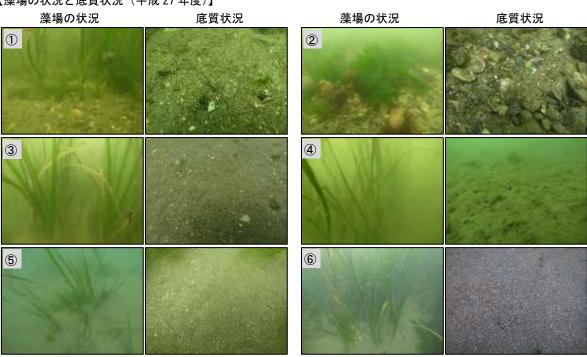

【藻場の状況と底質状況(平成25年度)】

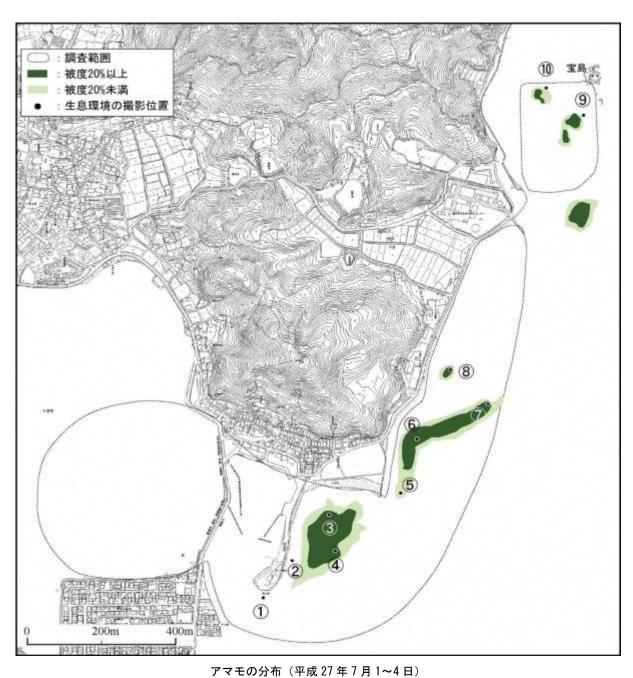



アマモの分布 (平成 25 年 7 月 15~18 日)




アマモの分布 (平成 26 年 5 月 2~5 日)


アマモの分布 (平成 26 年 7 月 14~17 日)



アマモの分布 (平成 27 年 5 月 7~10 日)

【藻場の状況と底質状況(平成27年度)】

 藻場の状況
 底質状況

 (2)
 (3)

 (3)
 (4)

 (4)
 (4)

 (5)
 (4)

 (6)
 (4)

 (6)
 (4)

 (7)
 (4)

 (8)
 (4)

 (9)
 (4)

 (10)
 (4)

 (2)
 (4)

 (3)
 (4)

 (4)
 (4)

 (5)
 (4)

 (6)
 (4)

 (7)
 (4)

 (8)
 (4)

 (8)
 (4)

 (8)
 (4)

 (8)
 (4)

 (8)
 (4)

 (8)
 (4)

 (8)
 (4)

 (9)
 (4)

 (10)
 (4)

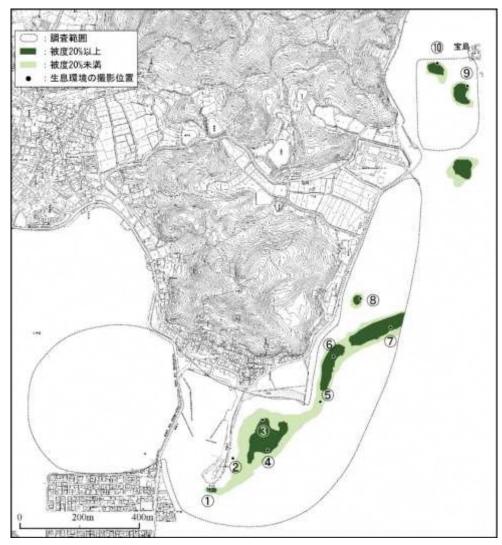
 (11)
 (4)

 (12)
 (4)

 (13)
 (4)

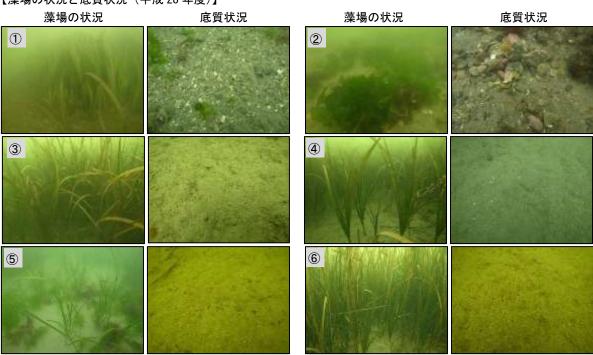
 (14)
 (4)

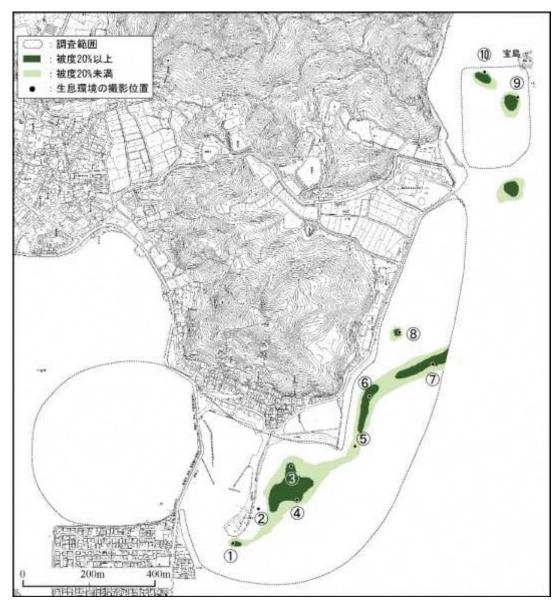
 (15)
 (4)

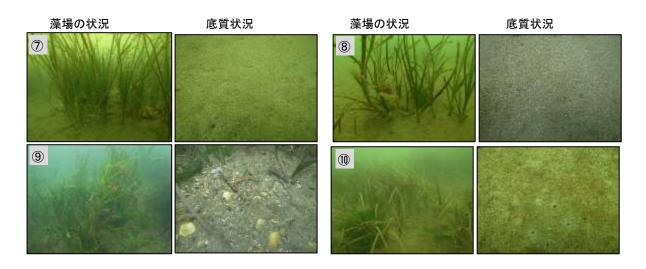

 (16)
 (4)

 (17)
 (4)

 (18)
 (4)


 (18)
 (4)


 (18)<


アマモの分布 (平成 28 年 5 月 9~12 日)

【藻場の状況と底質状況(平成28年度)】

アマモの分布 (平成 28 年 7 月 11~12 日、19~20 日)

アマモ場周辺で確認された生物

_	_						1				単位:作							10114				
ł						供用前 (H23~H25)				供用後 H26~H27 H28年5月11~12日 H28年7月19~20										00 П		
				_	調査地点・調査方法	アマモ 場の	-	-1	F-	-9	F-		∽н2 <i>1</i> F-	-9	H28		11~1 F-		H28			-2 -2
	種 名					利用	かご網	刺網	かご	刺網	かご網	刺網	かご	刺網	かご	_	かご網	刺網	かご	刺網	かご	
1	軟体動物門	頭足綱	コウイカ目	コウイカ科	カミナリイカ	Δ	和勺	0	網	0	M43	0	網	0	網	4	神日		網	1	網	
2					コウイカ	0	•••••	0		0						1		1				
3			ツツイカ 目	ヤリイカ科	アオリイカ	0	************			0		0		0		1	*************		***********			
4			八腕形目	マタ゛コ科	マダコ	0	0		0				0								1	
5					テナガダコ	Δ	0		0													
6	節足動物門	軟甲綱	エピ目	クルマエビ科	クルマエビ	0				0				0								
7				へイケカ゛ニ科	サメハダヘイケガニ	Δ								0			1	6				
8				tシガニ科	ヒシガニ	Δ	·							0								
9				ワタリカ゛ニ科	タイワンガザミ	Δ		0		0		0	0	0			1	3		57		91
10					ガザミ	0	************						0				1	2		1		2
11					ヒメガザミ	Δ								0			**********		************			
12					イシガニ	Δ	0	0	0	0	0	0	0	0	10	1	6	2	6	27	4	47
13				エンコウカ゛ニ科	マルバガニ	Δ						0							***********			
14	脊椎動物門	軟骨魚綱	エイ目	アカエイ科	アカエイ	0		0		0		0	İ	0				30		4		4
15					シロエイ	Δ								0								
16				ツハ゛クロエイ科	ツバクロエイ	Δ	000000000000		*****************		00000000000	0		0	***************************************		***************	,				
17		硬骨魚綱	ウナキ゛目	ウミヘビ科	ホタテウミヘビ	Δ				0	0		0				3		5		8	
18				アナゴ科	マアナゴ	0	·······				0		0		1		1					
19			=シン 目	=シン科	サッパ	0						0										
20					コノシロ	0				0		0		0								5
21			ナマス゛目	ゴンズイ科	ゴンズイ	Δ		0	0	0		0		0		8						
22			スス゛キ目	ボラ科	ボラ	0		0		0		0		0								
23					メナダ	0	************	0	***************************************								***************************************		**********			
24			ダツ目	ダツ科	ダツ	0	·					0										
25			カサコ゛目	フサカサコ゛科	タケノコメバル	Δ		0		0							**********		************			
26					メバル属	0		0		0												
27				オニオコセ、科	オニオコゼ	0		0		0		0		0				1				
28					ヒメオコゼ	0												1				
29				アイナメ科	クジメ	0	************	0	***************************************	0							***************************************		**********			-
30					アイナメ	0				0												
31			スス°キ目	スズキ科	スズキ	0		0		0												
32				テンシ゛クタ゛イ科	テンジクダイ	0			0													
33				アジ科	マアジ	0		0		0												
34		***************************************		tイラギ科	ヒイラギ	Δ						0		0		1				1		17
35				タイ科	ヘダイ	0	***************************************	0				0				1	***************************************			7		1
36			***************************************		キチヌ	Δ	*	0			*************								************			
37					クロダイ	0		0				0		0								
38		***************************************			マダイ	0					0								1	1	2	3
39				キス科	シロギス	0	***************************************	0		0	0	0		0		1	***************************************			6		3
40				タカノハタ゛イ科	タカノハダイ	0				0												
41			***************************************	ウミタナゴ科	ウミタナゴ	0		0		0				0								
42					アオタナゴ	Δ						0								6		
43					ウミタナゴ属	0						0		0								
44				シマイサキ科	シマイサキ	0						0										
45				^* 5科	キュウセン	0		Π		0												
46				ニシキキ゛ンホ゜科	ギンポ	Δ			0													
47		***************************************	***************************************	ネズッポ科	ネズミゴチ	Δ						0										
48				ハゼ科	マハゼ	0	0	T		0												
49					シモフリシマハゼ	Δ	************		0								***************************************		*************			
50				アイコ [*] 科	アイゴ	0		0		0		0								9		5

- 注1)「河川水辺の国勢調査のための生物リスト(国土交通省)」に基づき種を分類している。
- 注2)「アマモ場の利用」の"○"は、現地で魚卵や稚仔魚が確認されている種、または文献においてアマモ場を餌場や産卵場、隠れ場としての利用が示されている種である。アマモ場の利用が不明な種は"△"とした。
- 注3)供用前(H23~H25)の各種の"○"は平成 23~25 年度のいずれかの年度で、供用後(H26~H27)の各種の"○"は平成 26~27 年度のいずれかの年度で出現したことを示している。

アマモ場周辺で確認された生物

単位:個体

																				半17.	個体
				供用前			供用後														
					アマモ		(H23~	~H25)			H26~	~H27		H28	年5月	11~1	2日	H28	年7月	19~2	.0日
		_		調査地点・調査方法		-	-				-1		-2	_	-1			_	-1	F-2	
種 4	名				4-9713	かご 網	刺網	かご 網	刺網	かご 網	刺網	かご 網	刺網	かご 網	刺網	かご 網	刺網	かご 網	刺網	かご 網	刺網
		カレイ目	カレイ科	メイタガレイ	0				0												
				イシガレイ	0				0						1		1				2
				マコガレイ	0				0												
			ササウシノシタ科	シマウシノシタ	0		0		0		0		0		1		7				4
			ウシノシタ科	クロウシノシタ	0				0		0								1		2
				アカシタビラメ	Δ								0								
		フケ゛目	加州	アミメハギ	0		0														
				カワハギ	0		0		0		0		0								
			77*科	クサフグ	0	0	0	0	0	0	0	0	0		2	1	3	2	5	1	3
				ヒガンフグ	Δ		0		0		0										
				ショウサイフグ	Δ														1		
				コモンフグ	0				0		0				4		1				
		出 現	種 数			8~	-18	15~	~23	7~	15	9~	10	13	3	14	1	15	5	16	õ
		出 現 個	体 数			27	~74	44~	-126	26~	131	14~	133	37	7	72	2	14	1	20	15
軟体動物	門 腹足綱	盤足目	タマカ゜イ科	ツメタガイ	_					0											
		新腹足目	アッキカ゛イ科	アカニシ	-		0		0	0	0			5	1		1		2		1
			テングニシ科	テングニシ	-	0	0	0	0	0	0		0		12				2		
			イトマキボラ科	コナガニシ	-	0	0	0	0	0	0	0	0	42					51	33	5
棘皮動物	ŋ門 ヒトデ綱	モミシ゛カ゛イ目	モミシ゛カ゛イ科	モミジガイ	-						0	0	0								
	ウニ綱	ホンウニ 目	サンショウウニ科	サンショウウニ	_		0	0	0												
	軟体動物	軟体動物門 腹足綱 棘皮動物門 ヒトデ綱	カレイ目	### カレイ目 カレイ科 ### カレイ科 ### カリハキ*科 ***** **** **** **** **** **** ***	加	離産地点・調査方法 場の利用 種 名	福 名	福名 名 1826 1836 1840	種 名	種 名	報金地点・調査方法 H23~H25 F-1	報告	報金地点・調査方法 場合 H23 ~ H25 ~ H27 F-1 F-2 横名 名 H23~H25 H26~H27 F-1 F-2 F-1 F-2 Man Mac	Mac Ma	R		報題地点・調査方法 別表地点・調査方法 日本の	様 名	横 名		

- 注1)「河川水辺の国勢調査のための生物リスト(国土交通省)」に基づき種を分類している。
- 注2)「アマモ場の利用」の"○"は、現地で魚卵や稚仔魚が確認されている種、または文献においてアマモ場を餌場や産卵場、隠れ場としての利用が示されている種である。アマモ場の利用が不明な種は"△"とした。
- 注3)供用前(H23~H25)の各種の"○"は平成 23~25 年度のいずれかの年度で、供用後(H26~H27)の各種の"○"は平成 26~27 年度のいずれかの年度で出現したことを示している。

モニタリング調査結果の評価

・処理水の放流先である今津干潟および周辺では、塩沼地植生は平成28年度において、ホソバノハマアカザの株数とハママツナの分布面積が供用前の変動範囲より少なく、ハマボウとシバナの株数が多かったが、これは気象・海象要因等によると考えられる。

経年変化では、植生基盤の変化による変動がみられる種がいたものの、多くの種が供用前から供用後の平成28年度にかけて大きな変化はみられなかった。

・ベントスは、平成28年度において、種数や個体数、湿重量がいずれも供用前と概ね同程度の変動範囲内にあった。

経年変化では、供用前から供用後の平成28年度にかけて生息環境の悪化と考えられる大きな変化はみられなかった。

貴重種については、供用前から供用後の平成 27 年度まで確認されていた種で、出現頻度や出現数が少ない種の一部が平成 28 年度に確認されず、未確認種の今後の出現動向に注視する必要があるものの、多くの貴重種が供用前から供用後の平成 28 年度にかけて確認された。

- ・指標生物であるトビハゼやヤマトオサガニは、いずれも分布面積が供用前の変動範囲内にあった。 経年変化では、分布面積は横ばい傾向にあり、分布傾向も毎年概ね同様であった。
- ・藻場(アマモ場)は、平成 25 年度夏季における高水温の影響と考えられるアマモ場面積の減少後、平成 28 年度まで回復傾向がみられており、アマモ場周辺を利用する魚類や稚仔魚の種数もアマモ場面積の減少直後と比べて増えていた。
- ・調査結果に基づき、平成 28 年度において、処理水の放流先である今津干潟および周辺の生態系への影響は小さかったと考えられる。

環境監視項目7:今津干潟および周辺の貴重な生物

調査の目的

・放流先である今津干潟および周辺の貴重な生物への影響を監視する。

調査期間

・供用前と供用後

調査項目

<シロウオ>産卵状況、遡上状況

<カブトガニ^{※1}>産卵場整備状況、砂浜の状況、 生息状況

<ハクセンシオマネキ>底質環境の状況、 分布範囲

<モクズガニ※2>生息数

<クロツラヘラサギ>確認羽数、利用状況、 ねぐらの位置

調査方法

•調查範囲:

<シロウオ>

瑞梅寺川河口(調査地点図の青色の破線内)。

<カブトガニ>四所神社前。

<ハクセンシオマネキ及びクロツラヘラサギ> 瑞梅寺川河口および今津干潟 (調査地点図の赤線内)。

<モクズガニ> 周船寺川河口(R-1)

•調査日:

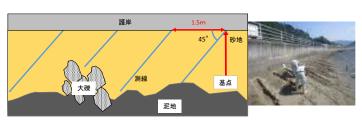
<シロウオ>産卵状況 平成 29 年 4 月 13 日 遡上状況 平成 29 年 3 月 10 日~14 日

<カブトガニ>平成28年9月19日

<ハクセンシオマネキ>平成28年9月14日

<クロツラヘラサギ>平成 29 年 1 月 13 日

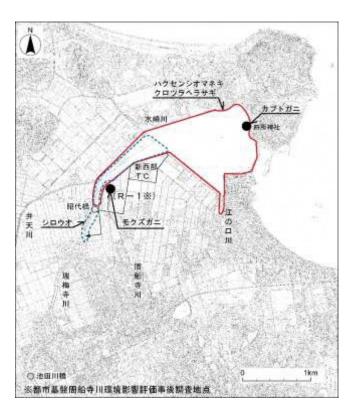
<モクズガニ>平成28年9月26~27日、10月11~12日、20~21日、11月10~11日、17~18日


•調査方法:

<シロウオ>定置網(網目 2mm×2mm、間口 40cm×60cm)、手網による採取および現地踏査による確認。

<カブトガニ>あらかじめ護岸から約45度方向に、1.5m間隔でラインを設置し、そのラインに沿って、スコップにより掘り進み、掘り出した砂や掘った跡に、カブトガニの卵塊の有無を確認。

<ハクセンシオマネキ及びクロツラヘラサギ>現地踏査による確認。


<モクズガニ>カニかご、小型定置網、たも網による捕獲。

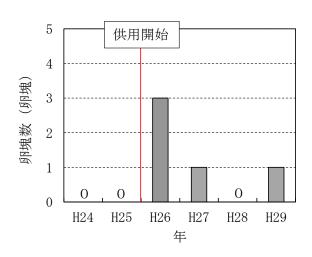
カブトガニ調査でのライン設置概要

※1 環境局による調査

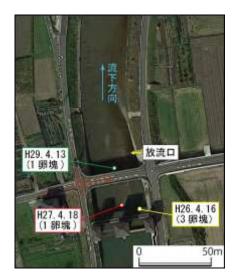
※2 道路下水道局建設部河川課による調査

調査地点

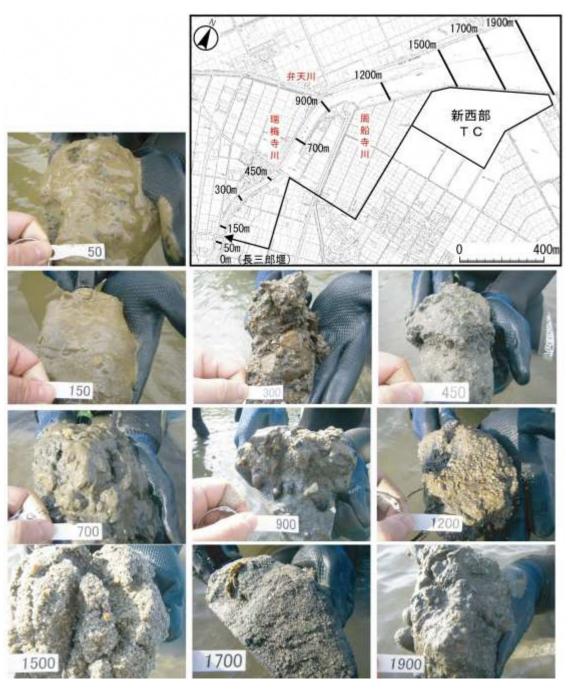
調査結果のとりまとめ方法


- ・今津干潟および周辺の貴重な生物について、事前調査結果による供用前の変動範囲との比較^{※1}、経年変化傾向の特徴の整理^{※2}を行い、供用後の評価を行った。
 - ※1 事前調査結果(供用前)による変動範囲との比較では、当該年度の調査結果が変動範囲内にある場合には「供用前の変動範囲内にある」とした。また、変動範囲を外れた場合でもその値が最小値・最大値から 10%以内であれば「供用前と同程度の変動範囲内にある」とし、それ以上外れた場合には「最小値より低い」あるいは「最大値より高い」とした。
 - ※2 経年変化傾向については、各項目において有意性を検定し、「横ばい傾向」、あるいは「増加・減少傾向(上昇・低下傾向)」を判断した。

調査結果


<u>シロウ</u>オ

<産卵状況>

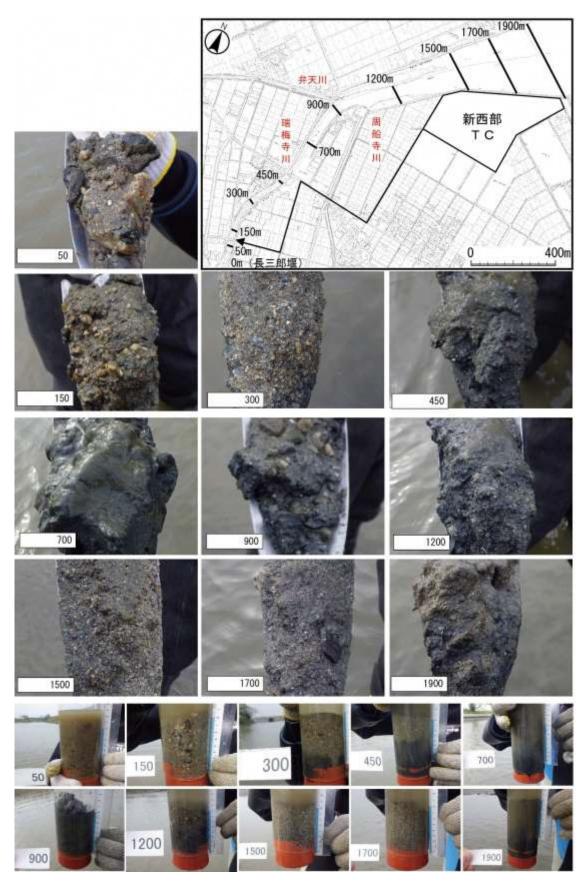

- ・平成29年4月の調査では、供用前には確認されなかったシロウオの産卵が瑞梅寺川で確認された。
- ・確認された場所は放流口上流の堰と放流口の間の 1 箇所であり、シルトが堆積していない場所が局所的に 形成されていたことにより、産卵したと考えられる。
- ・その他の場所にはシルトが堆積し、シロウオの産卵に適した場所がみられず、産卵は確認されなかった。
- ・シロウオの確認卵塊数の経年変化とその確認位置をみると、これまでに確認された卵塊の数は少なく、確認地点も局所的である。

シロウオの確認卵塊数の経年変化

シロウオの産卵確認位置

注)写真中の数字は上流端の長三郎堰からの距離(単位:m)を意味する。

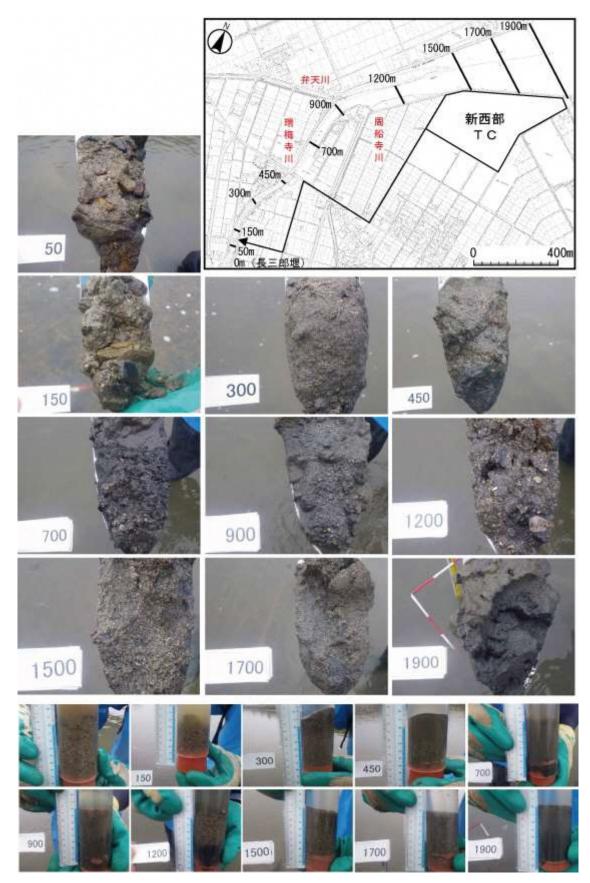
瑞梅寺川の底質の状況(平成23年4月19日)


注)写真中の数字は上流端の長三郎堰からの距離(単位:m)を意味する。

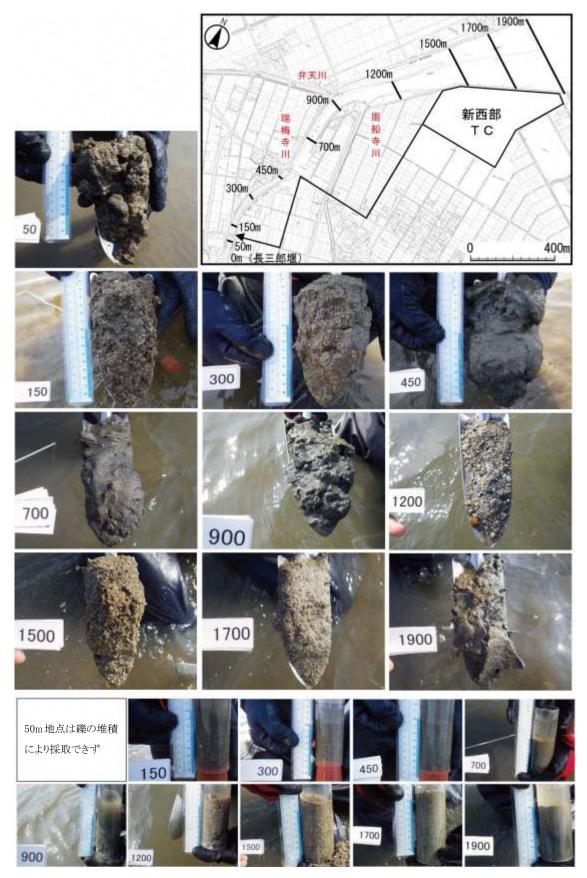
瑞梅寺川の底質の状況(平成24年4月6日)


注)写真中の数字は上流端の長三郎堰からの距離(単位:m)を意味する。

瑞梅寺川の底質の状況(平成25年4月26日)


注)写真中の数字は上流端の長三郎堰からの距離(単位:m)を意味する。

瑞梅寺川の底質の状況(平成 26 年 4 月 16 日)


注)写真中の数字は上流端の長三郎堰からの距離(単位:m)を意味する。

瑞梅寺川の底質の状況(平成27年4月18日)

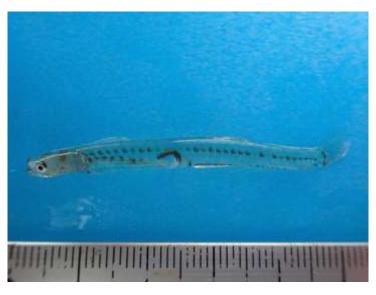
注)写真中の数字は上流端の長三郎堰からの距離(単位:m)を意味する。

瑞梅寺川の底質の状況(平成28年4月23日)

注)写真中の数字は上流端の長三郎堰からの距離(単位:m)を意味する。

瑞梅寺川の底質の状況(平成29年4月13日)

<遡上状況>


- ・供用後の平成29年3月において、捕獲されたシロウオは19個体であり、供用前と比べて多かった。
- ・供用前の平成23年度、24年度のシロウオの確認個体数は1~3個体とわずかであったが、供用後の平成25年度には54個体が確認された。平成26年度は確認されなかったものの、27年度には9個体、28年度には19個体が確認されており、シロウオの遡上量は年度による差が大きい状況にある。水温の低下や河川流量の増加がシロウオの遡上に影響を与えるという報告*があることから、年度による遡上量の差は、調査期間前や調査期間中の気象条件の影響を受けていると考えられる。

※「シロウオの生態と増殖に関する研究」 昭和60年、松井誠一

シロウオなど捕獲数

Ma	No. 程		種	名	供月	月前	供用後					
NO.			·····································	<u> </u>		H24. 3	H25. 3	H26.3	H27. 3	H28. 3	H29. 3	
1	脊椎動物門	硬骨魚綱	ウナキ゛目	アナゴ科	アナゴ科					2	2	
2			ニシン 目	カタクチイワシ科	カタクチイワシ			6			6	
3			コイ目	コイ科	タモロコ	1						
4			サケ目	シラウオ科	シラウオ		1	3		3	6	
5			ダツ目	メダカ科	ミナミメダカ	1						
6			スス゛キ目	スス゛キ科	スズキ	23	49	2574	1301	358	378	
7				タイ科	クロダイ		1					
8					キチヌ	1					1	
9				ボラ科	ボラ	21	3	15	6	4	33	
10				nt"科	シロウオ	1	3	54		9	19	
11					ウロハゼ			2				
12					マハゼ	23	1	1	6	15	5	
13					ヒメハゼ		1	2	7	87	21	
14					スジハゼ			1				
15					旧トウヨシノボリ類	1						
16					ヌマチチブ			1				
17					チチブ	1				2		
18			フク゛目	7グ科	クサフグ		222		6	6	6	
		1門1綱7目	10科		種 数	9	8	10	5	9	10	

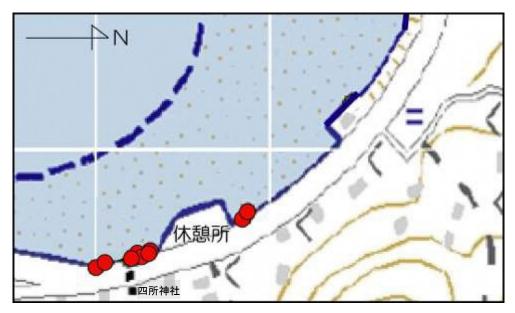
注)「河川水辺の国勢調査のための生物リスト(国土交通省)」に基づき種を分類している。

平成29年3月に瑞梅寺川で確認されたシロウオ

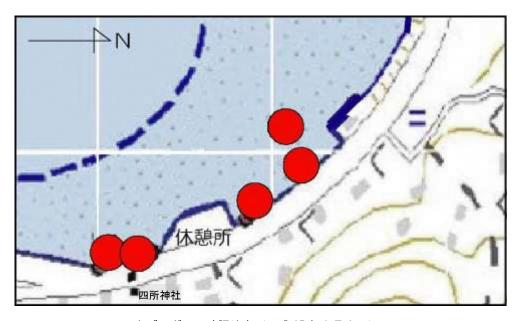
カブトガニ

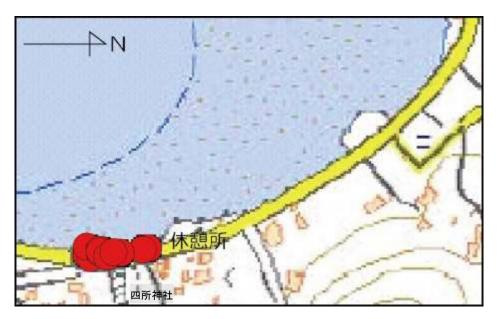
- ・供用後の平成28年9月に確認されたカブトガニの卵塊は9卵塊であり、供用前と比べて少なかった。堆積 厚の経年変化をみると(p.48)、地盤高に大きな変化はなく、産卵場の環境の変化とは考えにくい。なお、過年 度(平成 18~28 年度)における卵塊数の推移をみると、過去にも卵塊数が少ない年がみられるなど、年によ る変動が大きい傾向にある。
- ・確認箇所は、休憩所北側および南側であり、主に四所神社前の階段よりも南側の砂地の場所であった。 ※平成28年度調査時の状況

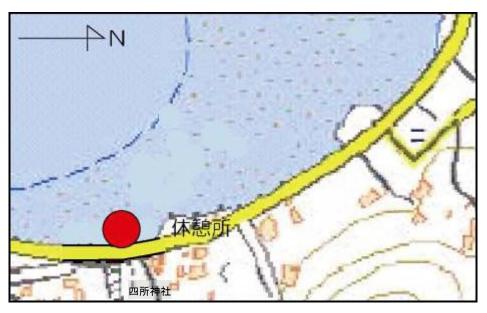
調査日時: 平成 28 年 9 月 19 日 15:00~17:30(潮位 94~47cm)、月齢:17.7、大潮

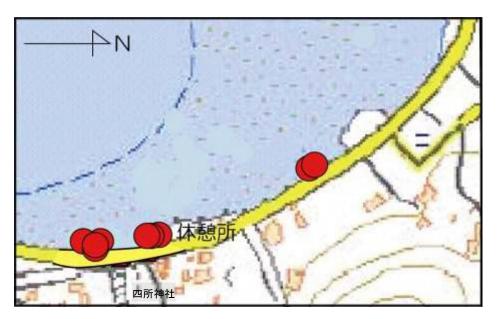


カブトガニの卵塊数の推移




カブトガニの確認地点 (平成 21 年 9 月 5 日、平成 22 年 9 月 23 日、平成 23 年 9 月 10 日)

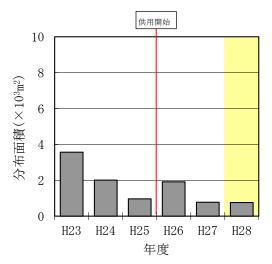

カブトガニの確認地点(平成24年9月14日)


カブトガニの確認地点 (平成 25 年 9 月 6 日)

カブトガニの確認地点 (平成 26 年 9 月 9 日)

カブトガニの確認地点(平成27年9月14日)

カブトガニの確認地点 (平成 28 年 9 月 19 日)


ハクセンシオマネキ

<供用前との比較>

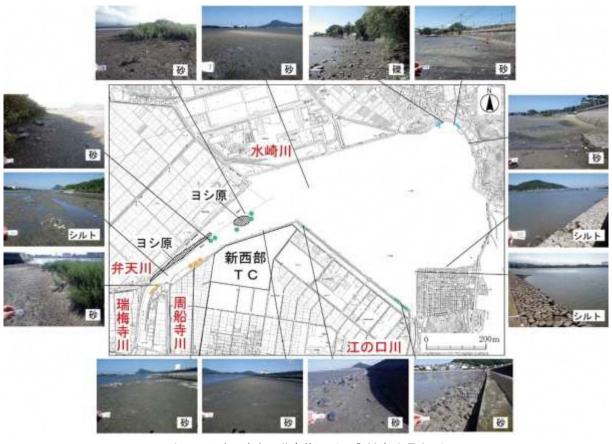
- ・平成 28 年度におけるハクセンシオマネキは、供用前と同様に、瑞梅寺川の右岸や瑞梅寺川と弁天川の間に あるヨシ原の縁辺部、今津干潟北側と南側に点在する砂泥地に分布していた。
- ・平成 28 年度の分布面積は、供用前と比べて小さかった。供用前から供用後の平成 28 年度にかけて、周船 寺川との合流部より下流側の瑞梅寺川右岸における分布面積の年変動が大きく、平成 28 年度はこの場所の 分布面積が小さかったことが一因である。

<経年変化>


- ・ハクセンシオマネキの分布場所は、供用前から平成28年度において、大きな変化はみられなかった。
- ・分布面積は、瑞梅寺川の右岸などで、供用前の平成25年度にかけて減少し、供用後の平成26年度には増加、平成27年度には再び減少するなど、年度による差が大きい状況にある。

ハクセンシオマネキの分布面積の経年変化

今津干潟で確認されたハクセンシオマネキ


ハクセンシオマネキの分布状況 (平成 23 年 9 月 10 日)

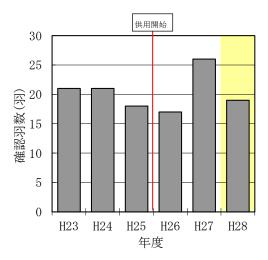
ハクセンシオマネキの分布状況 (平成 24 年 9 月 13 日)

ハクセンシオマネキの分布状況 (平成 25年9月17日)

ハクセンシオマネキの分布状況 (平成 26 年 9 月 8 日)

ハクセンシオマネキの分布状況 (平成 27 年 9 月 11 日)

ハクセンシオマネキの分布状況 (平成 28 年 9 月 14 日)

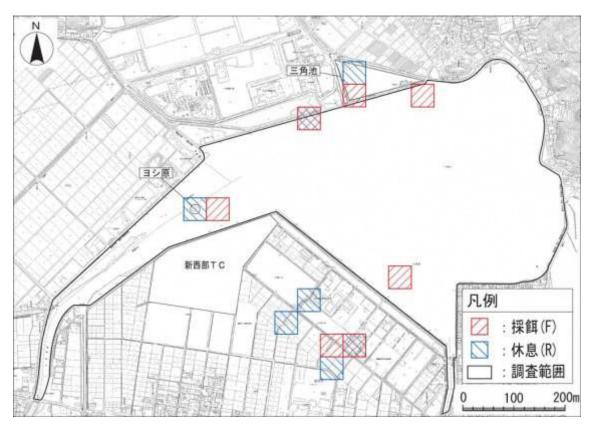

<u>クロツラヘラサギ</u>

く供用前との比較>

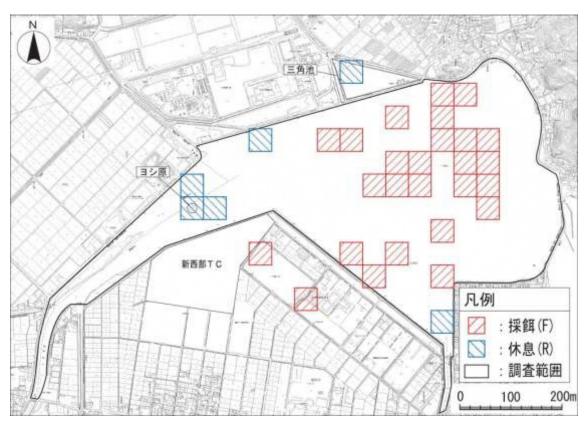
- ・平成28年度におけるクロツラヘラサギは、瑞梅寺川河口および今津干潟内で確認された。羽数は19羽であり、供用前の変動範囲内にあった。
- ・干潮前後の時間帯になると、干潟の北側や江の口川河口などへ移動して採餌をしていた。それ以外の時間帯には、瑞梅寺川河口の下流側のヨシ原や、瑞梅寺川と弁天川の合流部付近の砂嘴で休息していた。
- ・採餌・休息の利用場所は、供用開始前と概ね同様であった。

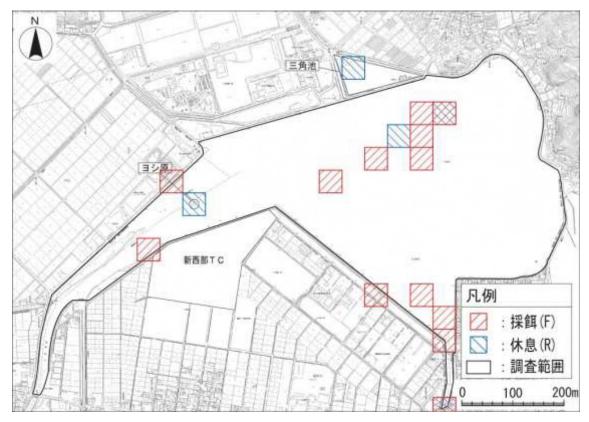
<経年変化>

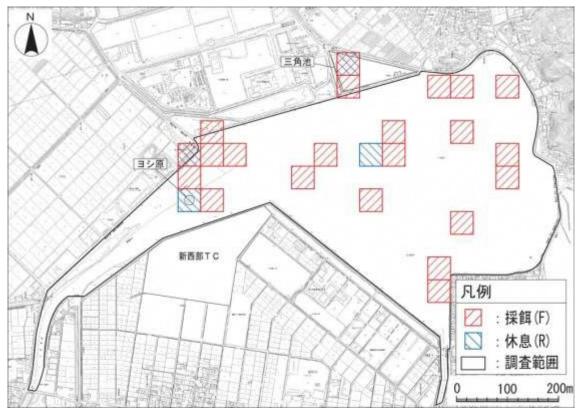
・供用前から供用後の平成 28 年度にかけて、クロツラヘラサギの確認羽数や採餌・休息の利用場所に大きな変化はみられなかった。

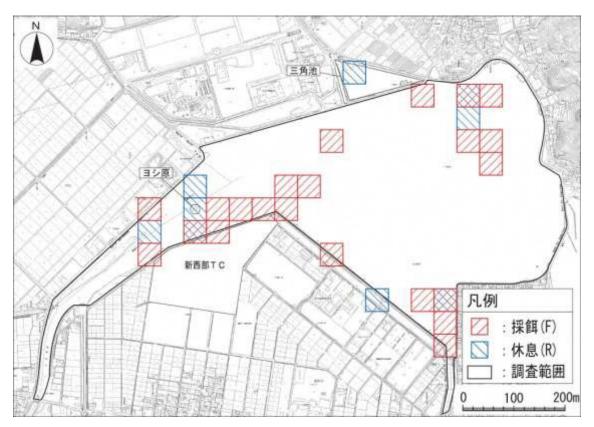


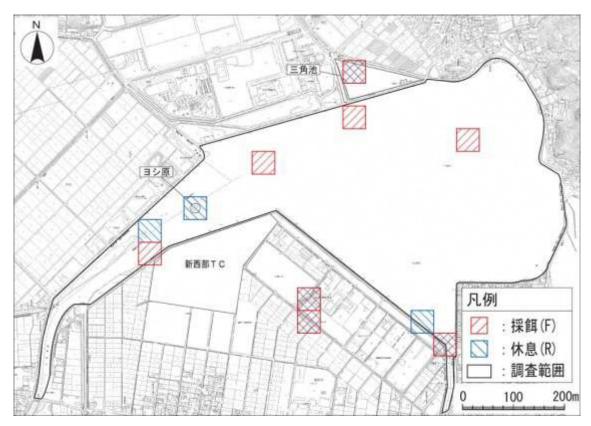
クロツラヘラサギの確認羽数の経年変化



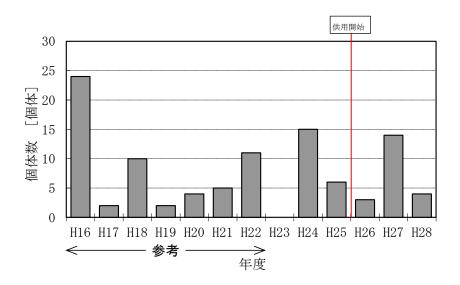

クロツラヘラサギの休息(左)と採餌(右)の様子


クロツラヘラサギの分布状況 (平成 24年1月30日)


クロツラヘラサギの分布状況 (平成 25 年 1 月 30 日)


クロツラヘラサギの分布状況 (平成 26 年 1 月 19 日)

クロツラヘラサギの分布状況 (平成 27 年 1 月 19 日)


クロツラヘラサギの分布状況 (平成 28 年 1 月 11 日)

クロツラヘラサギの分布状況 (平成 29 年 1 月 13 日)

モクズガニ

- ・平成 28 年度におけるモクズガニは、周船寺川河口部(R-1)において、繁殖行動のために降河中であった成体*と考えられる個体が確認された。
- ・確認個体数は4個体であり、供用前の変動範囲内にあった。

注) 平成 16~21 年度は 11 月、22 年度以降は 9~11 月に調査した結果による モクズガニの確認個体数の経年変化

モニタリング調査結果の評価

- ・放流先である瑞梅寺川では、シロウオは平成 28 年度において、遡上する個体数が供用前と比べて多く、供用前には確認されなかった産卵が確認された。遡上個体数は調査期間前や期間中の気象条件により個体数の変動が大きいと考えられる。産卵についてはこれまでに確認された卵塊数は少なく、確認地点も局所的にシルトが堆積していない場所のみであった。
- ・今津干潟においてカブトガニの重要な産卵場である四所神社前では、平成 28 年度において、カブトガニの産卵が確認され、卵塊数は供用前と同程度であった。確認箇所も供用前と概ね同様であった。
- ・今津干潟および周辺では、ハクセンシオマネキは平成28年度において、分布面積が供用前と比べて小さかったものの、分布位置は供用前と概ね同様であった。
- 経年変化では、一部の箇所で分布面積の変動が大きいことで、全体の分布面積の変動も大きくなっているが、 供用前から供用後の平成28年度にかけて大きな変化はみられなかった。
- ・また、クロツラヘラサギは、確認された羽数が供用前の変動範囲内にあった。 経年変化では、供用前から供用後の平成 28 年度にかけて、確認羽数や採餌・休息の利用場所に大きな変化はみられなかった。
- ・周船寺川河口部(瑞梅寺川との合流部)では、モクズガニは平成 28 年度において、確認個体数が供用前の変動範囲内にあった。
- ・調査結果に基づき、平成 28 年度において、処理水の放流先である今津干潟および周辺の貴重な生物への 影響は小さかったと考えられる。