# 平成 24 年度 新西部水処理センター 環境監視結果(案)

平成 25 年 3 月

福岡市道路下水道局

# ~目 次~

| 1  | 環境監視の目的 ・・・・・・・・・・・・・・・・・・・・ 1     |
|----|------------------------------------|
| 2  | 環境監視の体制と役割 ・・・・・・・・・・・・・・・ 1       |
| 3  | 事業内容 ・・・・・・・・・・・・・・・・・・・・・・ 2      |
|    | 1. これまでの経緯と今後の事業計画 ・・・・・・・・・・・ 2   |
|    | 2. 施設整備計画/施設運転計画 ・・・・・・・・・・・・・・ 3  |
| 4  | 環境監視結果 ・・・・・・・・・・・・・・・・・・・・・・・ 4   |
|    | 環境監視項目1:処理水質 ・・・・・・・・・・・・・・ 4      |
|    | 環境監視項目2:放流河川水質 ・・・・・・・・・・・ 5       |
|    | 環境監視項目3:臭気 ・・・・・・・・・・・・・・・・・・ 9    |
|    | 環境監視項目4:今津干潟および周辺の水環境 ・・・・・・・・・ 1  |
|    | 環境監視項目5:今津干潟および周辺の底質 ・・・・・・・・・・ 1  |
|    | 環境監視項目6:今津干潟および周辺の生態系 ・・・・・・・・・ 2  |
|    | 環境監視項目7:今津干潟および周辺の貴重な生物 ・・・・・・・・ 3 |
| 数值 | 直表                                 |

### 1 環境監視の目的

環境監視を実施することにより、

- 1) 予測した対象事業(新西部水処理センターの稼働)による影響が予測範囲内であるかを把握すること
- 2) 環境影響評価により検討した環境保全措置が十分に機能し効果を示しているかを把握すること 予測結果を上回る著しい環境影響が確認された場合には、
- 3)環境保全措置の追加・再検討等をすること

### 2 環境監視の体制と役割

### 事業者(福岡市道路下水道局)

- 1) 新西部水処理センターの適正な運用と保全対策の実施
- 2) 環境監視計画の策定
- 3)環境監視調査の実施、および環境監視調査結果の評価

### 委員会

- ・新西部水処理センター環境モニタリング委員会設置要綱第3条により、「委員会は次の事項について指導、助言を行う。」
  - 1)環境監視計画の策定に関すること
  - 2)環境監視結果の評価に関すること
  - 3)上記の評価を踏まえた対策等に関すること

### 3 事業内容

### 1. これまでの経緯と今後の事業計画

### 事業計画策定と環境影響評価の実施

平成9年~10年 水処理センター環境検討委員会

(環境影響評価:現地調査結果、予測・評価項目、環境影響評価結果について)

平成10年 (自主アセスによる)新西部水処理センター環境影響評価書

平成11年7月 都市計画決定

平成11年10月 下水道法事業認可

### 建設工事

### 第1期工事

平成21年3月~24年3月 土木工事

平成23年12月~25年3月 建築工事予定

平成24年度~25年度 機械設備工事、電気設備工事予定

### 施設稼働

平成25年度 第1系列供用開始予定

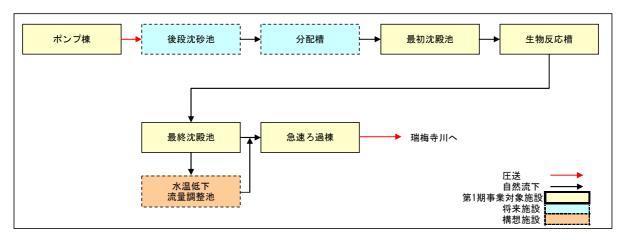


新西部水処理センターおよび放流先の位置

### 2. 施設整備計画/施設運転計画

### 施設整備計画

名称:福岡市新西部水処理センター(以下、新西部 TC)


位置:福岡県福岡市西区大字田尻地内

排除方式:分流式

水処理方式:凝集剤併用ステップ流入式多段硝化脱窒法+砂ろ過

汚泥処理方式:濃縮→(消化)→(脱水)

処理能力:計画 1 日最大汚水量 15,400m³/日(全体 77,000 m³/日の 1/5 系列)



施設構成

### 施設運転計画

Т-Р

- ・水処理はステップ流入式多段硝化脱窒法で、生物反応槽末端でPACを添加した後、急速ろ過後、紫外線滅菌し、瑞梅寺川へ放流する。
- ・発生汚泥は場内で機械濃縮後、西部水処理センターへタンクローリーで運んで処理する。

4.5

| 項目  | 計画流入水質(mg/L) | 計画処理水質(mg/L) | 計画放流水質<br>(下水道法事業認可)<br>(mg/L) |
|-----|--------------|--------------|--------------------------------|
| BOD | 180          | 3            | 15                             |
| COD | 90           | 8            | _                              |
| SS  | 170          | 5            | _                              |
| T-N | 40           | 9            | 20                             |

0.4

3

新西部水処理センターの計画水質等

# 4 環境監視結果

# 環境監視項目1:処理水質

※新西部水処理センターが稼働しておらず、処理水が放流されていないため、調査は実施していない。

### 環境監視項目 2:放流河川水質

### 調査の目的

・処理水の放流先である瑞梅寺川(放流河川)の水質への影響を監視する。

### 調査期間

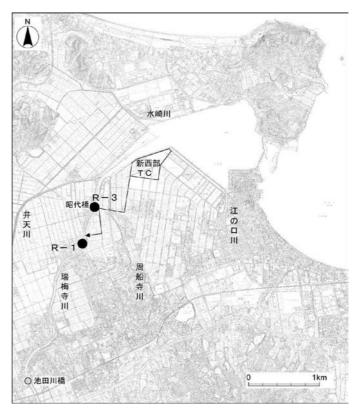
・供用前(事前)と供用後

### 調査項目

- •放流河川水質
  - ①評価項目は、環境基準が設定されている pH、BOD、DO、SS、大腸菌群数(生活環 境項目)とした。
  - ②参考項目は、水温、ATU-BOD、COD、塩化物イオン、EC、T-N、O-N、NH<sub>4</sub>-N、NO<sub>2</sub>-N、NO<sub>3</sub>-N、T-P、PO<sub>4</sub>-P、TOC、クロロフィル a とした。

### 調査方法

•調査地点:


放流口上流(R-1)、環境基準点の昭代橋 (R-3)

•調査時期:

大潮満潮時(新月付近)

•調査頻度:

新月日の4月21日、5月21日、7月19日、 8月18日、9月16日、12月13日、1月12日、2月10日の合計8回



調査地点

### •採取方法:

分析試料は、河川ではバケツを用いて流心付近の表層より採取した。

・分析方法または測定方法:

### (評価項目)

| 分析項目または測定項目 | 分析方法または測定方法                          |
|-------------|--------------------------------------|
| рН          | JIS K0102 -2008- 12                  |
| BOD         | JIS K0102 -2008- 21                  |
| DO          | JIS K0102 -2008- 32                  |
| SS          | 環境庁告示第 59 号(S46.12)付表 8              |
| 大腸菌群数       | 環境庁告示第 59 号(S46.12)別表 2 の 1 の(1)備考 4 |

### (参考項目)

| 分析項目または測定項目        | 分析方法または測定方法                                                                      |
|--------------------|----------------------------------------------------------------------------------|
| 水温                 | JIS K 0102 -2008- 7.2                                                            |
| ATU-BOD            | JIS K 0102 -2008- 21 備考 1                                                        |
| COD                | JIS K 0102 -2008- 17                                                             |
| 塩化物イオン             | JIS K 0102 -2008- 35                                                             |
| EC                 | JIS K 0102 –2008– 13                                                             |
| T-N                | JIS K 0102 -2008- 45                                                             |
| O-N                | 計算による [O-N]=[T-N]ー[NH <sub>4</sub> -N]ー[NO <sub>3</sub> -N]ー[NO <sub>2</sub> -N] |
| NH <sub>4</sub> -N | JIS K 0102 -2008- 42                                                             |
| NO <sub>2</sub> -N | JIS K 0102 -2008- 43.1                                                           |
| NO <sub>3</sub> -N | JIS K 0102 -2008- 43.2                                                           |
| Т-Р                | JIS K 0102 -2008- 46.3                                                           |
| PO <sub>4</sub> -P | JIS K 0102 -2008- 46.1                                                           |
| TOC                | JIS K 0102 -2008- 22.1                                                           |
| クロロフィル a           | 海洋観測指針 -1999- 6.3                                                                |

#### 環境基準

•生活環境項目:

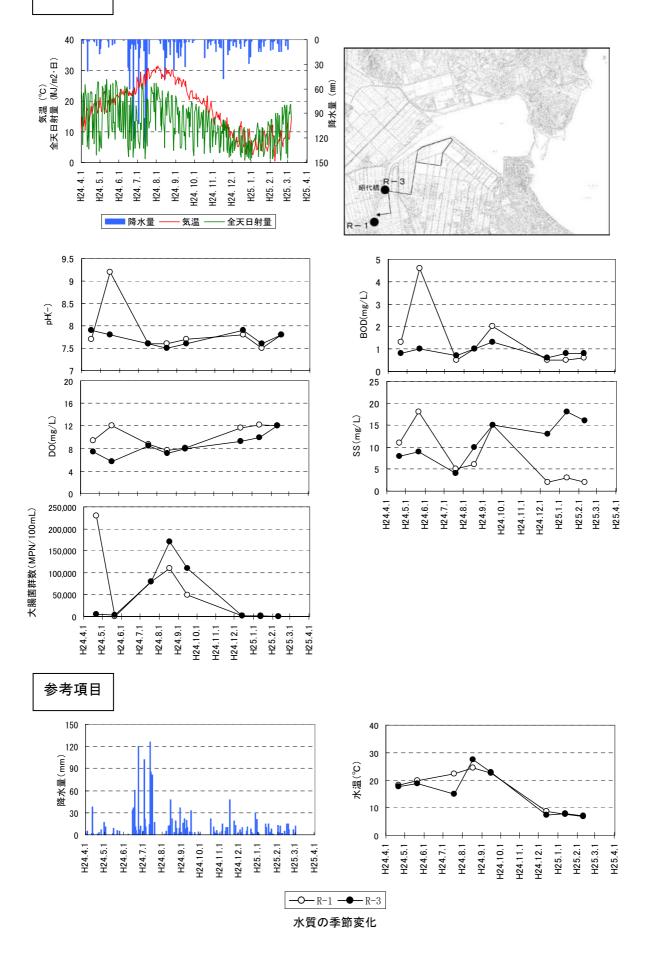
|      |        | 達           |         |           | 環境基準値  |         |          |          |
|------|--------|-------------|---------|-----------|--------|---------|----------|----------|
| 河川   | 類<br>型 | 成<br>期<br>間 | 水素イオン濃度 | 生物学的酸素要求量 | 浮遊物質量  | 溶存酸素量   | 大腸菌群数    | 類型指定年月日  |
| 瑞梅寺川 |        |             | 6.5 以上  |           | 25mg/L | 7.5mg/L | 1,000MPN | 平成8年6月14 |
| 全域   | А      | イ           | 8.5 以下  | 2mg/L 以下  | 以下     | 以上      | /100mL   | 日福岡県告示   |
| 土水   |        |             | 0.0 5/7 |           |        | <b></b> | 以下       | 第 1141 号 |

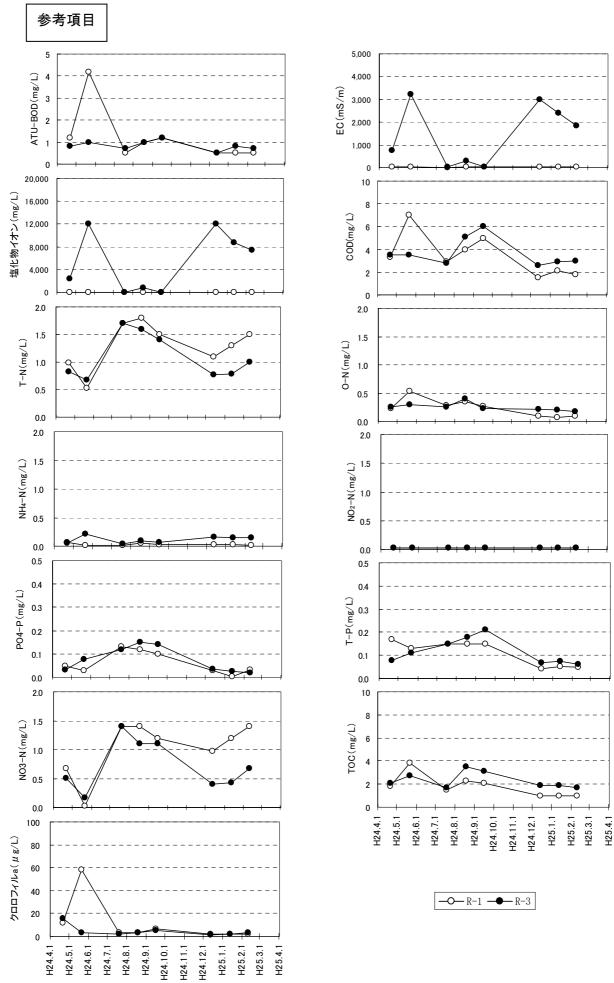
注)達成期間の分類「イ」は、"直ちに達成"

### 調査結果

### 変動範囲

- ・放流口上流のR-1は、4月から2月の期間において、pHが7.5~9.2、BODが0.5未満~4.6mg/L、DOが7.7~12.2mg/L、SSが2~18mg/L、大腸菌群数が490~230000MPN/100mLの範囲で推移した。
- ・ 環境基準点のR-3では、pHが7.5~7.9、BODが0.6~1.3mg/L、DOが5.7~12.1mg/L、SSが4~18mg/L、大腸菌群数は330~170000MPN/100mLの範囲で推移した。


### 季節変動


- ・ 放流口上流のR-1では、降水量が少なく、河川水量が少ないと考えられる 5 月下旬に河川水の滞留に伴い、内部生産が増加し、pH や BOD、DO、クロロフィル a が高くなった。また、7 月中旬、8 月中旬、9 月中旬には、出水に伴い、大腸菌群数が高くなった。
- ・環境基準点のR-3では、降雨による河川水量の増加が考えられる7月中旬、8月中旬、9月中旬に塩化物イオンやECが低下しており、上流からの流入により大腸菌群数が高くなった。

### 環境基準との比較

・R-3の結果を環境基準値と比較すると、pH、BOD、SS は調査を行った 8 回全てにおいて環境基準を満足していた。DO は 4 月下旬、5 月下旬、8 月下旬に、大腸菌群数は 2 月上旬を除く調査時において環境基準を満足しなかった。

### 評価項目





### 環境監視項目3:臭気

### 調査の目的

・処理水の放流に伴う周辺環境への臭気による影響を監視する。

### 調査期間

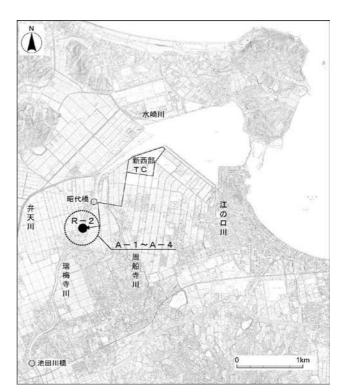
•供用前と供用後

### 調査項目

- 臭気
  - ①評価項目は、臭気強度、臭気濃度とした。
- ②参考項目は、気温、風向、風速とした。

### 調査方法

•調査地点:


放流口(R-2)、放流口から風下側の民家 周辺 4 地点(A-1~A-4)

- •調査日:8月22日
- •採取方法:

現地において臭気の種類、臭気強度を測定 した後に、小型の吸引ポンプを用い、分析試 料をテドラーバッグに採取した。

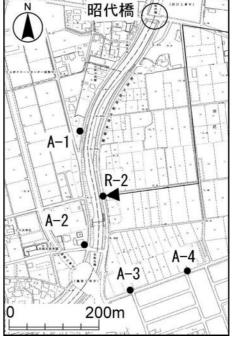
•試験方法:

三点比較式臭袋法による嗅覚試験。



調査地点

### 調査結果


・放流口予定箇所(R-2)および放流口から風下側の民家周辺ではいずれも、磯臭などの特異な臭気は確認されておらず、全地点で指導基準を満足していた。

### 臭気調査結果

| 地点  | 臭気強度 | 臭気指数 | 指導基準                    |
|-----|------|------|-------------------------|
| R-2 | 1.3  | <10  | 自与长米                    |
| A-1 | 0.6  | <10  | 臭気指数<br>10未満            |
| A-2 | 0.7  | <10  | 10水価<br>(臭気強度 2.5 に対応する |
| A-3 | 0.8  | <10  | 濃度として設定)                |
| A-4 | 0.7  | <10  | 版及ことで成化が                |

### 【参考】6段階臭気強度表示法

| 臭気強度 | においの程度                     |
|------|----------------------------|
| 0    | 無臭                         |
| 1    | やっと感知できるにおい(検知閾値濃度)        |
| 2    | 何のにおいであるかがわかる弱いにおい(認知閾値濃度) |
| 3    | らくに感知できるにおい                |
| 4    | 強いにおい                      |
| 5    | 強烈なにおい                     |



### 環境監視項目4:今津干潟および周辺の水環境

#### 調査の目的

・放流先である今津干潟および周辺の水質への影響を監視する。

### 調査期間

・供用前と供用後

#### 調査項目

- ・今津干潟および今津湾の水質
- ①評価項目は、濁り、有機物、栄養塩類に係るものとして、SS、COD、T-N、O-N、NH<sub>4</sub>-N、NO<sub>2</sub>-N、NO<sub>3</sub>-N、T-P、PO<sub>4</sub>-P、TOC、クロロフィル a とした。
- ②参考項目は、水温、塩化物イオン、EC、水深、透明度、赤潮発生状況、水温・塩分・DO・クロロフィル蛍光 強度鉛直分布とした。
- ③また、放流河川以外の河川からの流入を把握するために、瑞梅寺川以外の流入河川水質についても、同様の項目を調べた。
  - 流入河川水質(SS、COD、T-N、O-N、NH<sub>4</sub>-N、NO<sub>2</sub>-N、NO<sub>3</sub>-N、T-P、PO<sub>4</sub>-P、TOC、クロロフィル a、水温、塩化物イオン、EC、水深)

### 調査方法

•調査地点:

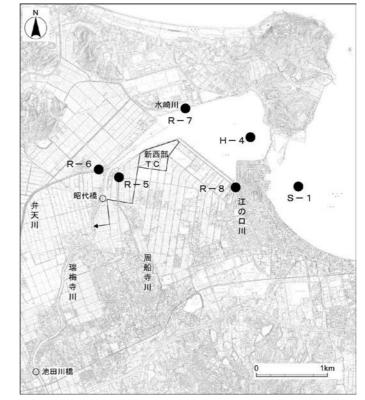
今津干潟(H-4)、今津湾(S-1)、流入河 川(R-5、R-6、R-7、R-8)

•調査時期:

新月大潮時(流入河川水質調査と同一日)と し、今津干潟および今津湾では満潮時、流 入河川では干潮時とした。

### •調査頻度:

新月日の4月21日、5月21日、7月19日、 8月18日、9月16日、12月13日、1月12 日、2月10日の合計8回


### •採取方法:

分析試料は、流入河川(R-5、R-6、R-7、R-8)ではバケツを用いて流心表層より 採取した。

H-4、S-1では、 表層(海面下 0.5m)、底層(海底上 0.5m)においてバンドーン型採水器を用いて船上より採取した。

### ·測定方法:

H-4、S-1では、船上から多項目水質計



調査地点

(ハイドロラボ社製 DS5型)を用い、水温・塩分・DO・クロロフィル蛍光強度の鉛直分布を測定する。測定間隔は10cmとし、測定範囲は海面から海底直上までとした。

・分析方法または測定方法:

### (評価項目)

| 分析項目または測定項目 | 分析方法または測定方法             |
|-------------|-------------------------|
| SS          | 環境庁告示第 59 号(S46.12)付表 8 |
| COD         | JIS K 0102 –2008– 17    |

| 分析項目または測定項目        | 分析方法または測定方法                                                                      |
|--------------------|----------------------------------------------------------------------------------|
| T-N                | JIS K 0102 -2008- 45                                                             |
| O-N                | 計算による [O-N]=[T-N]ー[NH <sub>4</sub> -N]ー[NO <sub>3</sub> -N]ー[NO <sub>2</sub> -N] |
| NH <sub>4</sub> -N | JIS K 0102 -2008- 42                                                             |
| NO <sub>2</sub> -N | JIS K 0102 -2008- 43.1                                                           |
| NO <sub>3</sub> -N | JIS K 0102 -2008- 43.2                                                           |
| T-P                | JIS K 0102 -2008- 46.3                                                           |
| PO <sub>4</sub> -P | JIS K 0102 -2008- 46.1                                                           |
| TOC                | JIS K 0102 -2008- 22.1                                                           |
| クロロフィル a           | 海洋観測指針 -1999- 6.3                                                                |

### (参考項目)

| 分析項目または測定項目 | 分析方法または測定方法           |
|-------------|-----------------------|
| 水温          | JIS K 0102 -2008- 7.2 |
| 塩化物イオン      | JIS K 0102 -2008- 35  |
| EC          | JIS K 0102 -2008- 13  |
| 水深          | レッド測深                 |
| 透明度         | 海洋観測指針 -1999- 3.2     |

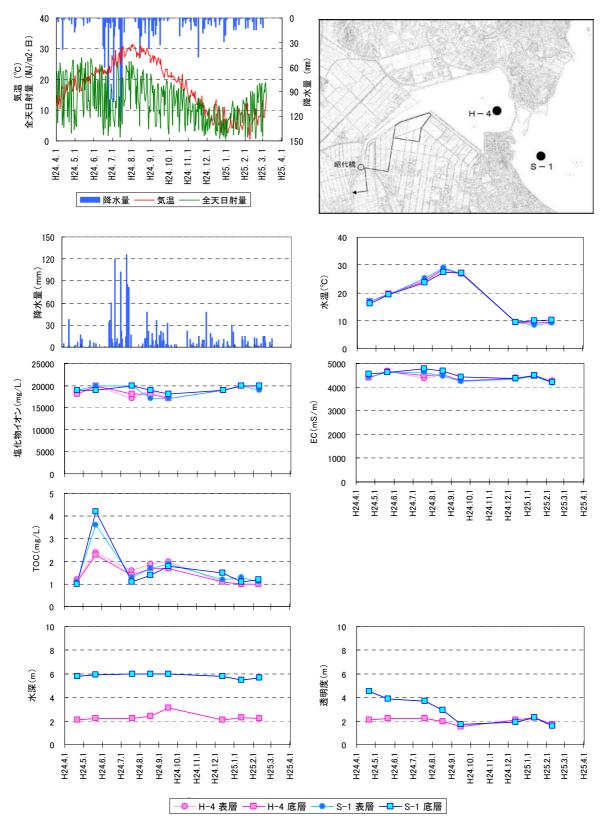
### 調査結果

### 干潟•海域

### <変動範囲>

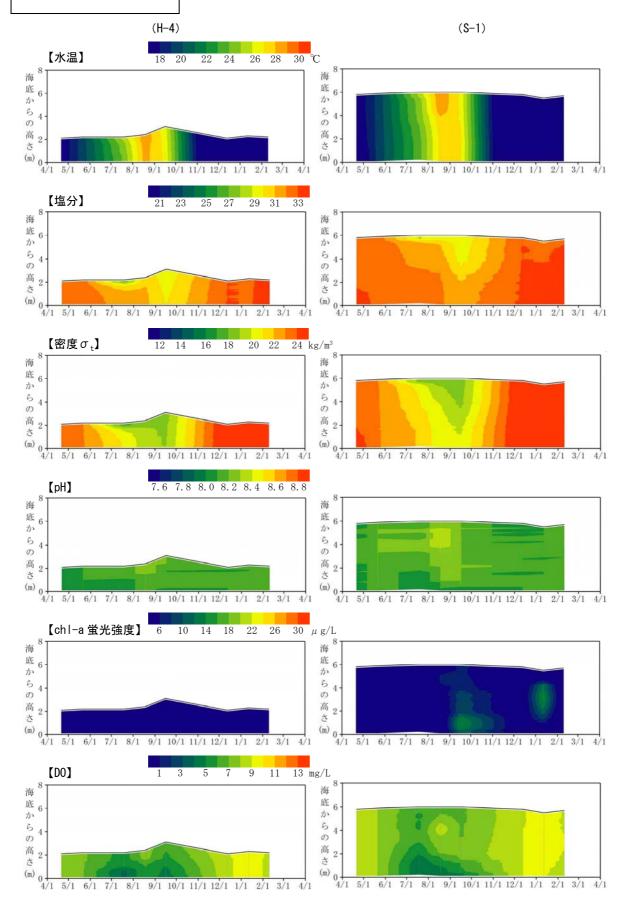
・干潟のHー4では、4月~2月の期間において、SS が 2~12mg/L、COD が 1.3~2.8mg/L、T-N が 0.23~ 0.48mg/L、O-N が 0.10~0.30 mg/L、NH<sub>4</sub>-N が 0.05~0.12mg/L、NO<sub>2</sub>-N が 0.02mg/L 未満、NO<sub>3</sub>-N が 0.02 未満~0.14mg/L、T-P が 0.015~0.056mg/L、PO<sub>4</sub>-P が 0.003~0.08mg/L、TOC が 1.0 未満~2.4mg/L、クロロフィル a が 0.9~9.7  $\mu$  g/L の範囲で推移した。

海域の $\mathbf{S}-\mathbf{1}$ では、SS が  $2\sim19$ mg/L、COD が  $1.1\sim2.9$ mg/L、T-N が  $0.21\sim0.42$ mg/L、O-N が  $0.12\sim0.31$ mg/L、NH<sub>4</sub>-N が  $0.03\sim0.11$ mg/L、NO<sub>2</sub>-N が 0.02mg/L 未満、NO<sub>3</sub>-N が 0.02 未満~0.15mg/L、T-P が  $0.014\sim0.052$ mg/L、PO<sub>4</sub>-P が 0.001 未満~0.039mg/L、TOC が  $1.0\sim4.2$ mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L、0.052mg/L 0.052mg/L、0.052mg/L 0.052mg/L 0.052mg/L


### <季節変化>

・9 月中旬には、COD、クロロフィル a の増加がみられた。福岡県水産海洋技術センターの調査(速報)によると、9 月中旬には博多湾全海域において赤潮が確認されており、CODやクロロフィルaの増加は周辺海域の赤潮の影響であることが考えられた。また、12 月中旬と2 月中旬には海域のS-1において、波浪の影響と考えられる SS の増加がみられた。

### 干潟•海域(評価項目)




### 干潟・海域(参考項目)



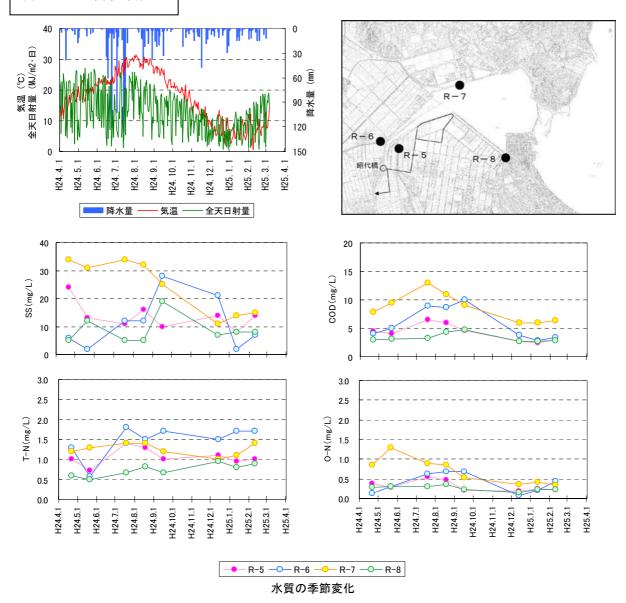
水質の季節変化

### 干潟・海域(参考項目)

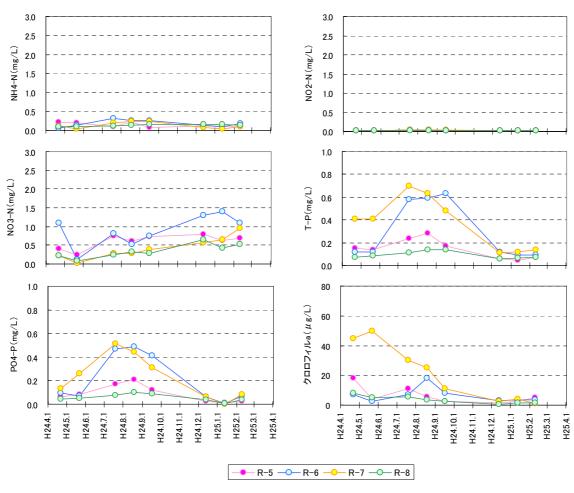


水質の鉛直分布の季節変化

### 流入河川

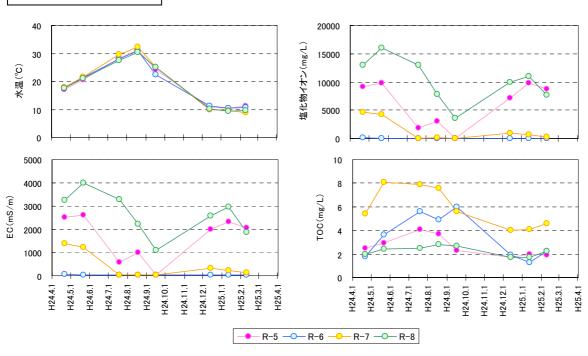

### <変動範囲>

・瑞梅寺川を除く流入河川では、SS が  $2\sim34$ mg/L、COD が  $2.4\sim13$ mg/L、T-N が  $0.50\sim1.8$ mg/L、O-N が  $0.07\sim1.3$ mg/L、NH<sub>4</sub>-N が  $0.04\sim0.32$ mg/L、NO<sub>2</sub>-N が 0.02 未満 $\sim0.03$ mg/L、NO<sub>3</sub>-N が 0.02 未満 $\sim1.4$ mg/L、T-P が  $0.044\sim0.70$ mg/L、PO<sub>4</sub>-P が  $0.003\sim0.51$ mg/L、TOC が  $1.3\sim8.1$ mg/L、クロロフィル a が  $0.7\sim50~\mu$  g/L の範囲で推移した。


### <季節変化>

・干潟への流入点付近に堰があり、河川水が滞留しやすい弁天川(R-6)や水崎川(R-7)では COD や TOC、クロロフィル a が 4 月~9 月に高く、水温が低下し、内部生産が小さい 12 月~2 月に小さくなる。T-N では季節変動は小さく、流域に農耕地が多い弁天川(R-6)が他の地点よりも高くなる傾向にあった。T-Pでは、弁天川(R-6)や水崎川(R-7)において、7 月~9 月にかけて高く、12 月以降は低くなる傾向にあった。

### 流入河川 (評価項目)




### 流入河川 (評価項目)



水質の季節変化

# 流入河川(参考項目)



水質の季節変化

### 環境監視項目5:今津干潟および周辺の底質

#### 調査の目的

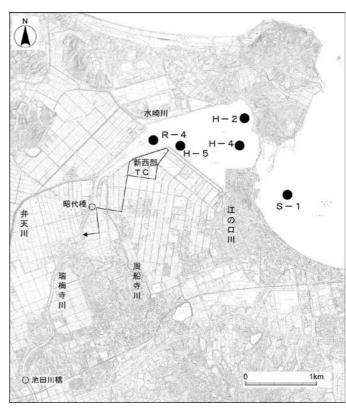
・放流先である今津干潟および周辺の底質への影響を監視する。

#### 調査期間

・供用前と供用後

#### 調査項目

- ・土砂、浮泥等の堆積状況 評価項目は、干潟の標高とした。
- ・今津干潟および今津湾の底質
  - ①評価項目は、底泥有機物(CODsed、強熱減量(Ig-Loss)、含水比)、栄養塩類(T-N、T-P)、全硫化物、TOC、粒度組成とした。
  - ②参考項目は、泥温、泥色、試料写真とした。


### 調査方法

- •調査地点:
  - 堆積状況は、瑞梅寺川河口(R-4)、今津干 潟内のカブトガニの産卵場および幼生の生 育場(H-2、H-5)
  - 底質調査は、瑞梅寺川河口(R-4)、今津干 潟(H-2、H-4、H-5)、今津湾(S-1)

### •調査時期:

- 堆積状況は、R-4が5月21日、8月31日、 11月12日、1月12日、H-2とH-5が夏季 の8月31日、冬季の1月12日の干潮時とした。
- 底質調査は、夏季の8月31日、冬季の1月 12日とした。
- ・堆積状況の測定方法:

トータルステーションを用いて、R-4では調査 初期において、調査地点に河川流下方向に 対して垂直な断面測線上に20m間隔で設定した5箇所の地盤高を測量した。H-2とH-5



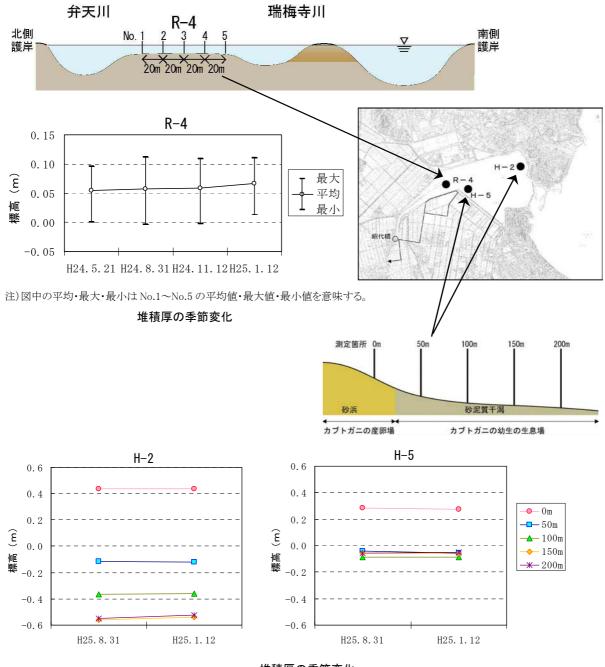
調査地点

では、R-4と同様、調査初期において、汀線に対して垂直な断面測線上に 50m 間隔で設定した 5 箇所の地盤高を測量した。

### ・試料の採取方法:

海底表面から 5cm の深さの底泥を、S-1、H-4ではスミス・マッキンタイヤ型採泥器で、R-4、H-2、H-5ではコドラートを用いて採取した。

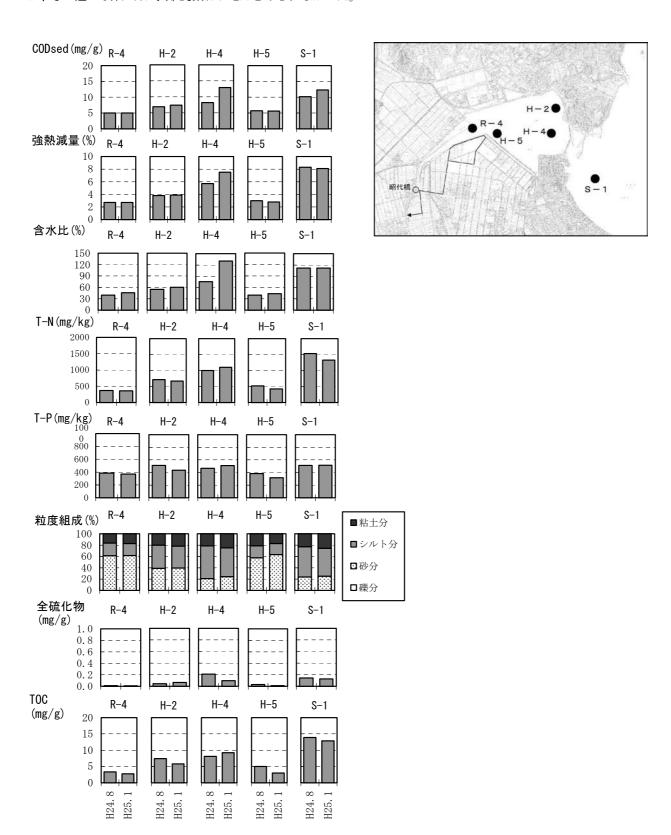
・分析方法または測定方法:


| 項目            | 分析方法                       |
|---------------|----------------------------|
| CODsed        | 底質調査法(S63 環水管 127 号) Ⅱ 20  |
| 強熱減量(Ig-Loss) | 底質調査法(S63 環水管 127 号) Ⅱ 4   |
| 含水比           | 底質調査法(S63 環水管 127 号) Ⅱ 3   |
| T-N           | 底質調査法(S63 環水管 127 号) Ⅱ 18  |
| Т-Р           | 底質調査法(S63 環水管 127 号) Ⅱ 19  |
| 全硫化物          | 底質調査法(S63 環水管 127 号) II 17 |

| 項目   | 分析方法                             |  |  |  |  |
|------|----------------------------------|--|--|--|--|
| TOC  | 沿岸環境調査マニュアル〔底質・生物篇〕 -1986- 5・5・1 |  |  |  |  |
| 粒度組成 | JIS A 1204 –2009–                |  |  |  |  |

### 調査結果

### 堆積状況


- ・瑞梅寺川河口のR-4では、5月21日、8月31日、11月12日を比べると、標高が0.054m、0.055m、0.057mと、出水前後の堆積厚の変動は少なかった。1月12日は0.067mであり、11月と比べると1cm程度の堆積がみられた。カブトガニの生息場であるH-2とH-5では8月と1月に堆積状況の差はみられなかった。
- ・6月中旬から7月中旬にかけての梅雨時期には最大日降水量120mmを超える降雨がみられ、河川流量が増加したが、出水による堆積状況の変化はみられなかった。



堆積厚の季節変化

### 底質

・泥分(粘土分+シルト分)が高いH-2やH-4、S-1で COD や強熱減量などの有機物や硫化物、栄養塩が他の地点と比べて、高かった。季節変動をみると、H-4では COD、強熱減量、含水比が冬季にやや高いが、その他の項目では季節変動はほとんどみられなかった。



底質の季節変化

### 環境監視項目6:今津干潟および周辺の生態系

#### 調査の目的

・放流先である今津干潟および周辺の生態系への影響を監視する。

### 調査期間

•供用前と供用後

### 調査項目

塩沼地植生(植生、分布範囲)、ベントス(種数、個体数、湿重量)、指標生物(トビハゼ、ヤマトオサガニの分布範囲)、藻場(アマモの分布範囲、繁茂状況)

### 調査方法

・調査地点または調査範囲:

塩沼地植生調査は、瑞梅寺川河口。

ベントス調査は、瑞梅寺川河口(R-4)、今 津干潟(H-1~H-4)。

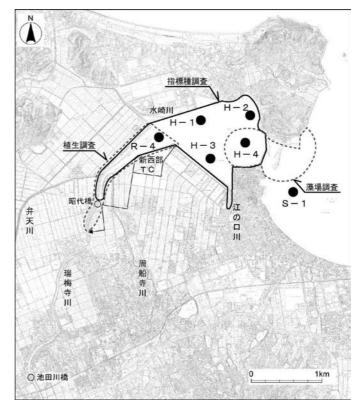
指標種調査は、瑞梅寺川河口および今津干潟。

藻場調査は、浜崎漁港周辺。

### •調査時期:

塩沼地植生調査は、8月3日。

ベントス調査は、5月21日、8月31日、11月12日、1月12日、1月12日。 貴重種調査も8月31日に同時に行った

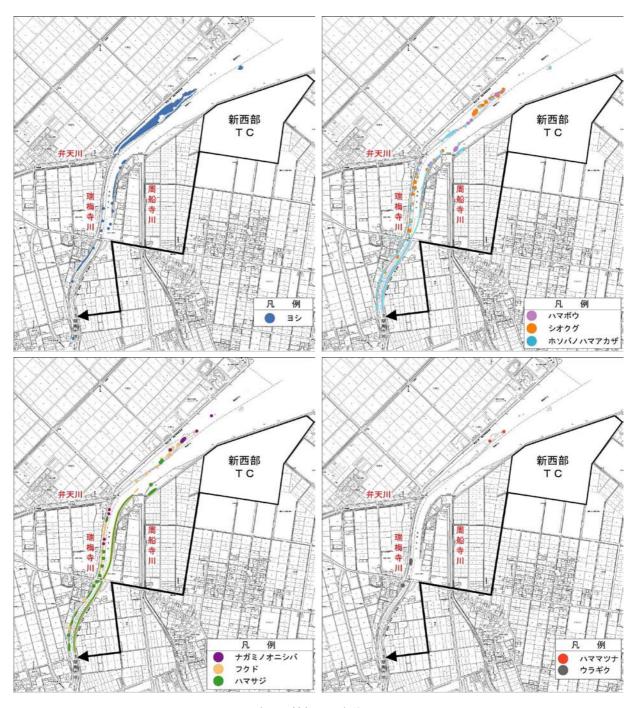

指標生物調査は5月5日、9月2日。 藻場調査は、5月28日 $\sim$ 31日、7月5日 $\sim$ 8日。

### •調査方法:

塩沼地植生および指標生物調査は、現地踏 査による観察。

ベントス調査は、S-1、H-4ではスミス・マッキンタイヤ型採泥器、R-4、H-1、H-2、H-3ではコドラートを用いる定量調査による。

藻場調査は、船上からの観察、ビデオ撮影による定性調査。



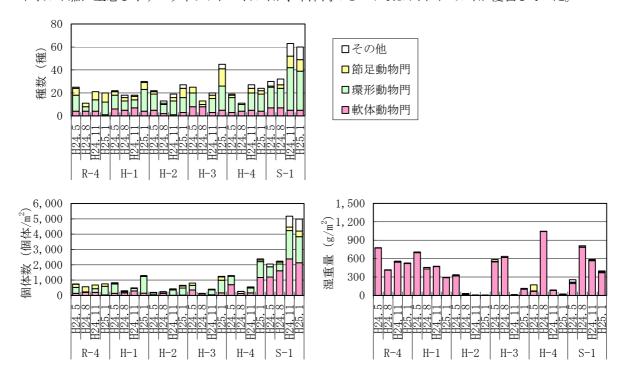

調査地点


### 調査結果

### 塩沼地植生

- ・瑞梅寺川の左岸部と弁天川にはヨシが広く分布しており、このヨシ群落周辺にハマボウやシオクグ、フクド、ハマサジなどが点在していた。
- ・そのほか、周船寺川の合流部よりも上流側の瑞梅寺川護岸には、フクドやハマサジ、ホソバノハマアカザなど が広く点在していた。



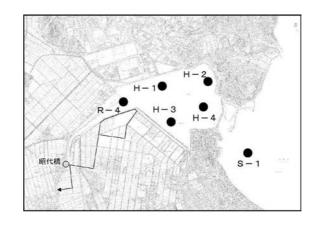

塩沼地植物の分布状況



今津干潟の塩沼地植物

### ベントス

- ・種数は、今津湾のS-1が最も多かった。瑞梅寺川河口部のR-4や今津干潟のH-1、H-2、H-3、H-4では5月から高水温期の8月にかけて種数が減少し、その後、11月に増加していた。
- ・個体数は、環形動物が多いS-1が最も多かった。瑞梅寺川河口部のR-4や今津干潟のH-1、H-2では汽水域の砂質を好むムロミスナウミナナフシや砂質~砂泥質を好む *Heteromastus* sp.が多く、カキ礁に近いH-3ではマガキが、今津干潟湾口部のH-4では泥質環境を好むシズクガイ、今津湾のS-1ではホトトギスガイが多かった。
- ・湿重量は、軟体動物の占める割合が多いR-4やH-1、H-3、S-1で高い傾向にあった。瑞梅寺川河口部のR-4やH-1では砂泥〜泥質を好むオキシジミガイやヘナタリガイが、H-2やH-3、H-4ではマガキやカキ礁に生息しやすいウネナシトマヤガイが、今津湾のS-1ではホトトギスガイが優占していた。




ベントスの分布

### ベントスの主な出現種(上位3種)

| 地点  | 個体数                | 湿重量        |
|-----|--------------------|------------|
| R-4 | ムロミスナウミナナフシ        | オキシジミガイ    |
|     | ヘナタリガイ             | ヘナタリガイ     |
|     | Heteromastus sp.   | ヤマトオサガニ    |
| H-1 | Heteromastus sp.   | オキシジミガイ    |
|     | テリザクラガイ            | イチョウシラトリガイ |
|     | ミナミシロガネゴカイ         | ヘナタリガイ     |
| H-2 | Heteromastus sp.   | マガキ        |
|     | Tharyx sp.         | アメリカフジツボ   |
|     | ウメノハナガイ            | クサフグ       |
| H-3 | マガキ                | マガキ        |
|     | カタマガリギボシイソメ        | ウネナシトマヤガイ  |
|     | Haploscoloplos sp. | タカノケフサイソガニ |
| H-4 | シズクガイ              | マガキ        |
|     | ソデナガスピオ            | アラムシロガイ    |
|     | カタマガリギボシイソメ        | イシガニ       |
| S-1 | ホトトギスガイ            | ホトトギスガイ    |
|     | カタマガリギボシイソメ        | モミジガイ      |
|     | シズクガイ              | メガネクモヒトデ   |





- ・ベントス調査及び8月に実施した貴重種の生息状況調査において、確認された貴重種は、全27種であった。
- ・瑞梅寺川河口では、環境省レッドリストに絶滅危惧 I 類で指定されているイチョウシラトリガイや絶滅危惧 II 類に指定されているカワアイガイなどの貝類のほか、同リストの絶滅危惧 II 類に指定されているシオマネキやハクセンシオマネキなどの甲殻類も確認され、今津干潟内の地点周辺よりも確認された貴重種の数は多かった。
- ・今津干潟では主に貝類が確認されたほか、魚類のタビラクチも確認された。

貴重種の確認状況

| 種 名              | 貴重種カテゴリー |       |          |                    |  |
|------------------|----------|-------|----------|--------------------|--|
|                  | 環境省      | 水産庁   | 福岡県      | 状況                 |  |
| 1 エドガワミズゴマツボ     | 準絶滅危惧    |       |          | 0                  |  |
| 2 クリイロカワザンショウ    | 準絶滅危惧    |       |          | •                  |  |
| 3 アズキカワザンショウ     | 絶滅危惧Ⅱ類   |       |          | •                  |  |
| 4 フトヘナタリ         | 準絶滅危惧    |       |          | •                  |  |
| 5 ヘナタリガイ         | 準絶滅危惧    |       | 絶滅危惧 I 類 | $\bigcirc \bullet$ |  |
| 6 カワアイガイ         | 絶滅危惧Ⅱ類   |       |          | •                  |  |
| 7 ウミニナ           | 準絶滅危惧    | 減少傾向  |          | $\bigcirc \bullet$ |  |
| 8 ムシロガイ          | 準絶滅危惧    |       |          | 0                  |  |
| 9 コメツブツララガイ      | 絶滅危惧Ⅱ類   |       |          | 0                  |  |
| 10 オカミミガイ        | 絶滅危惧Ⅱ類   | 危急種   | 絶滅危惧Ⅱ類   | •                  |  |
| 11 ナラビオカミミガイ     | 絶滅危惧Ⅱ類   |       | 絶滅危惧I類   | •                  |  |
| 12 キヌカツギハマシイノミガイ | 絶滅危惧Ⅱ類   |       | 絶滅危惧I類   | •                  |  |
| 13 イチョウシラトリガイ    | 絶滅危惧 I 類 |       |          | $\circ \bullet$    |  |
| 14 モモノハナガイ       | 準絶滅危惧    |       |          | 0                  |  |
| 15 ユウシオガイ        | 準絶滅危惧    |       |          | 0                  |  |
| 16 テリザクラガイ       | 絶滅危惧Ⅱ類   |       |          | 0                  |  |
| 17 サクラガイ         | 準絶滅危惧    |       |          | 0                  |  |
| 18 ウネナシトマヤガイ     | 準絶滅危惧    |       |          | $\circ \bullet$    |  |
| 19 カブトガニ         | 絶滅危惧I類   | 絶滅危惧種 |          | •                  |  |
| 20 ヒメムツアシガニ      |          |       | 情報不足     | 0                  |  |
| 21 ムツハアリアケガニ     |          |       | 準絶滅危惧    | $\bigcirc \bullet$ |  |
| 22 オサガニ          |          |       | 準絶滅危惧    | •                  |  |
| 23 シオマネキ         | 絶滅危惧Ⅱ類   | 希少種   | 絶滅危惧     | •                  |  |
| 24 ハクセンシオマネキ     | 絶滅危惧Ⅱ類   |       | 準絶滅危惧    | •                  |  |
| 25 ハマガニ          |          |       | 準絶滅危惧    | •                  |  |
| 26 ヒメアシハラガニ      |          |       | 準絶滅危惧    | •                  |  |
| 27 タビラクチ         | 絶滅危惧IB類  | 減少種   | 絶滅危惧Ⅱ類   | •                  |  |

○:4季調査, ●貴重種調査(8月)

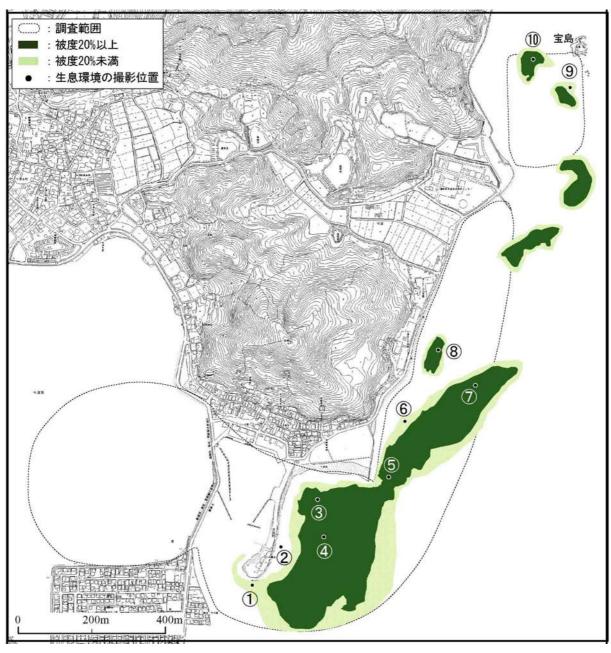
### 指標生物

- ・トビハゼは、5月5日において弁天川が今津干潟へ流入する河口の泥質部や今津干潟北側で確認された。9月20日にも、同様の場所で確認された。
- ・ヤマトオサガニは5月、8月ともに、瑞梅寺川から今津干潟の澪筋部を除くほぼ全域に広く分布しており、特に水崎川の遊水池の前面や今津干潟南側の前面において個体数が多かった。

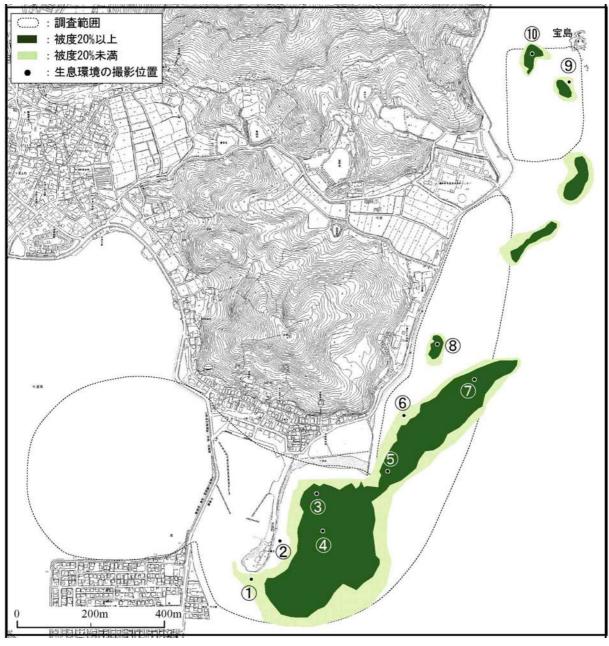


トビハゼの分布




ヤマトオサガニの分布




今津干潟で確認された指標生物

### 藻場(アマモ場)

- ・アマモは洲の崎沖合から北側に広く分布しており、洲の崎沖合前面と北側の砂泥質(写真の③、④、⑤、⑦) に密なアマモの分布がみられたほか、宝島の南側付近にも密なアマモが点在していた。
- •5月と7月のアマモの分布状況を比較すると、繁茂期の5月と比べて、7月の分布はやや縮小するが、広い 分布が維持されていた。
- ・刺網とマルチネットを用いて藻場周辺における魚類や稚仔魚の利用状況を確認したところ、計 30 種の魚類 やイカ・タコ類の利用が確認され、その種類、数ともに、水温の上昇により生物の活動が活発となる7月が5月と比べて多かった。



アマモの分布(5月)



アマモの分布(7月)

### 【藻場の状況と底質状況】



### アマモ場周辺で確認された生物

|    |           |                      |          |                               |           |         |    | H24年5月30~31日 |    |     |    | H24年7月7~8日 |    |  |
|----|-----------|----------------------|----------|-------------------------------|-----------|---------|----|--------------|----|-----|----|------------|----|--|
|    |           |                      |          |                               | 調査地点・調査方法 | F-1 F-2 |    | F-1          |    | F-2 |    |            |    |  |
|    | 種 名       |                      |          |                               |           | かご網     | 刺網 | かご網          | 刺網 | かご網 | 刺網 | かご網        | 刺網 |  |
| 1  | 軟体動物門 頭足綱 | コウイカ 目               | コウイカ科    | Sepia lycidas                 | カミナリイカ    |         |    |              | 4  |     |    |            | 11 |  |
| 2  |           |                      |          | Sepia esculenta               | コウイカ      |         |    |              |    |     | 1  |            |    |  |
| 3  |           | ツツイカ 目               | ヤリイカ科    | Sepioteuthis lessoniana       | アオリイカ     |         |    |              | 1  |     |    |            |    |  |
| 4  |           | 八腕形目                 | マダン科     | Octopus vulgare               | マダコ       | 1       |    | 2            |    |     |    | 6          |    |  |
| 5  | 脊椎動物門 軟骨魚 | 鋼 エイ目                | アカエイ科    | Dasyatis akajei               | アカエイ      |         |    |              |    |     | 2  |            | 3  |  |
| 6  | 硬骨魚:      | 鋼 ナマス <sup>*</sup> 目 | ゴンズイ科    | Plotosus japonicus            | ゴンズイ      |         |    | 1            | 3  |     | 2  |            | 4  |  |
| 7  |           | カサコ゛目                | フサカサゴ科   | Sebastes oblongus             | タケノコメバル   |         | 4  |              | 3  |     | 1  |            | 2  |  |
| 8  |           |                      |          | Sebastes sp.                  | メバル属      |         |    |              |    |     | 5  |            | 3  |  |
| 9  |           |                      | たわせ、科    | Inimicus japonicus            | オニオコゼ     |         |    |              |    |     |    |            | 3  |  |
| 10 |           |                      | アイナメ科    | Hexagrammos agrammus          | クジメ       |         |    |              |    |     |    |            | 1  |  |
| 11 |           |                      |          | Hexagrammos otakii            | アイナメ      |         |    |              |    |     |    |            | 1  |  |
| 12 |           | スズギ目                 | スズキ科     | Lateolabrax japonicus         | スズキ       |         | 2  |              | 4  |     | 6  |            | 1  |  |
| 13 |           |                      | アジ科      | Trachurus japonicus           | マアジ       |         |    |              |    |     | 1  |            | 2  |  |
| 14 |           |                      | 外科       | Sparus sarba                  | ヘダイ       |         |    |              |    |     | 3  |            |    |  |
| 15 |           |                      |          | Acanthopagrus schlegelii      | クロダイ      |         |    |              |    |     | 1  |            |    |  |
| 16 |           |                      | 叔科       | Sillago japonica              | シロギス      |         | 1  |              |    |     | 1  |            | 1  |  |
| 17 |           |                      | ウミタナゴ科   | Ditrema temminckii temminckii | ウミタナゴ     |         | 4  |              | 4  |     | 8  |            | 9  |  |
| 18 |           |                      | タカノハダイ科  | Goniistius zonatus            | タカノハダイ    |         |    |              |    |     |    |            | 1  |  |
| 19 |           |                      | **ラ科     | Mugil cephalus cephalus       | ボラ        |         | 1  |              | 2  |     | 1  |            |    |  |
| 20 |           |                      | ハゼ科      | Acanthogobius flavimanus      | マハゼ       |         |    |              |    | 1   |    |            | 1  |  |
| 21 |           |                      |          | Tridentiger bifasciatus       | シモフリシマハゼ  |         |    | 2            |    |     |    |            |    |  |
| 22 |           |                      | アイゴ科     | Siganus fuscescens            | アイゴ       |         | 8  |              | 12 |     |    |            | 7  |  |
| 23 |           | カレイ目                 | カレイ科     | Pleuronichthys cornutus       | メイタガレイ    |         |    |              | 1  |     |    |            |    |  |
| 24 |           |                      |          | Pleuronectes yokohamae        | マコガレイ     |         |    |              | 1  |     |    |            |    |  |
| 25 |           |                      | ササウシノシタ科 | Zebrias zebrinus              | シマウシノシタ   |         |    |              | 1  |     |    |            | 2  |  |
| 26 |           |                      | ウシノシタ科   | Paraplagusia japonica         | クロウシノシタ   |         |    |              |    |     |    |            | 1  |  |
| 27 |           | 77 目                 | 加州       | Rudarius ercodes              | アミメハギ     |         |    |              |    |     | 1  |            |    |  |
| 28 |           |                      | 77*科     | Takifugu pardalis             | ヒガンフグ     |         |    |              |    |     | 1  |            | 4  |  |
| 29 |           |                      |          | Takifugu poecilonotus         | コモンフグ     |         |    |              |    |     |    |            | 1  |  |
| 30 |           |                      |          | Takifugu niphobles            | クサフグ      |         |    | 2            | 5  |     | 1  |            | 11 |  |
|    | 軟体動物門 腹足綱 | 新腹足目                 | アクキガイ科   | Rapana venosa                 | アカニシ      |         | 2  |              | 1  |     |    |            | 2  |  |
|    |           |                      | テングニシ科   | Hemifusus tuba                | テングニシ     |         |    | 1            | 2  | 1   | 1  | 2          | 2  |  |
| 参  |           |                      | イトマキボラ科  | Fusinus ferrugineus           | コナガニシ     | 12      |    | 39           | 5  | 20  | 3  | 14         | 3  |  |
| 考  | 節足動物門 軟甲綱 | It" 目                | ワタリカ゛ニ科  | Charybdis japonica            | イシガニ      | 5       | 1  | 3            | 1  | 12  | 12 | 2          | 5  |  |
|    |           |                      |          | Portunus pelagicus            | タイワンガザミ   |         |    |              |    |     | 5  |            | 1  |  |
|    | 棘皮動物門 ウニ綱 | ホンウニ目                | サンショウウニ科 | Temnopleurus toreumaticus     | サンショウウニ   |         |    | 1            |    |     |    |            |    |  |
|    |           |                      |          |                               |           | 7       |    | 14           |    | 16  |    | 21         |    |  |
|    |           |                      | 出現       | 個 体 数                         |           | 21      |    | 48           |    | 36  |    | 75         |    |  |

### 環境監視項目フ:今津干潟および周辺の貴重な生物

#### 調査の目的

・放流先である今津干潟および周辺の生態系への影響を監視する。

### 調査期間

・供用前と供用後

#### 調査項目

シロウオ(産卵状況、生息状況(遡上量))、 カブトガニ(産卵場整備状況、砂浜の状況、 生息状況)<sup>※1</sup>、ハクセンシオマネキ(底質環境の状況、分布範囲)、モクズガニ(生息数) <sup>※2</sup>、クロツラヘラサギ(利用状況、ねぐらの位置)

### 調査方法

### •調査範囲:

シロウオは、瑞梅寺川河口。 カブトガニは、四所神社前。 ハクセンシオマネキ、クロツラヘラサギは、瑞梅寺川河口および今津干潟 モクズガニは、周船寺川河口(R-1)

#### •調查日:

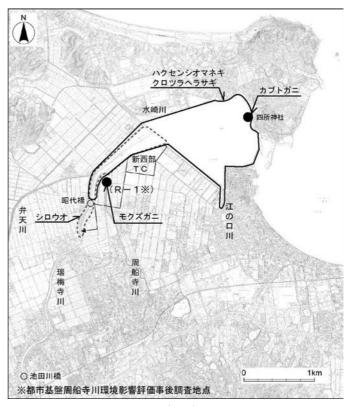
シロウオは、産卵状況調査を4月6日、遡上 状況を3月8日 $\sim$ 12日。

カブトガニは、9月13日、14日。

ハクセンシオマネキは、9月13日。

クロツラヘラサギは、1月30日。

モクズガニは、9月26~27日、10月18~19日、10月29~30日、11月12~13日、11月28~29日。


### •調査方法:

シロウオは、定置網、手網による採取および現地踏査による観察。

カブトガニは、あらかじめ護岸から 1.5m 間隔で、護岸から約 45 度方向にラインを設置し、その設置したラインに沿って、スコップにより掘り進み、掘り出した砂や掘った跡に、カブトガニの卵塊の有無を確認。 ハクセンシオマネキおよびクロツラヘラサギは、現地踏査による観察。

### ※1 環境局による調査

※2 道路下水道局によるモニタリング調査



調査地点

### 調査結果

### <u>シロウオ</u>

### <産卵状況>

- ・瑞梅寺川では、シロウオの産卵は確認されなかった。
- ・シロウオの産卵が確認されなかった理由は、上流部には河床に産卵時に利用する礫がみられたが、礫の表面にはシルトが堆積していたためと考えられる。



注) 写真中の数字は、長三郎堰からの距離を示す。

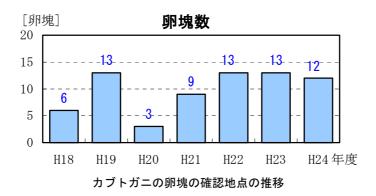
注)写真中の数字は上流端の長三郎堰からの距離を意味する。

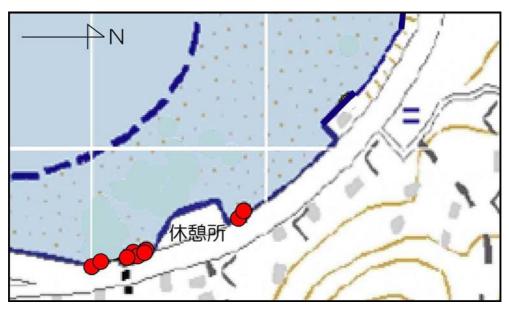
瑞梅寺川の底質の状況

### <遡上状況>

・シロウオは4日間で3個体確認された。

### シロウオなど捕獲数


| No. |       |         | 種     | 名     |      | 3/9 | 3/10 | 3/11 | 3/12 | 合計  |
|-----|-------|---------|-------|-------|------|-----|------|------|------|-----|
| 1   | 脊椎動物門 | 硬骨魚綱    | サケ目   | シラウオ科 | シラウオ |     |      | 1    |      | 1   |
| 2   |       |         | スス゛キ目 | 双**科  | スズキ  | 23  | 3    | 5    | 18   | 49  |
| 3   |       |         |       | 外科    | クロダイ |     | 1    |      |      | 1   |
| 4   |       |         |       | ボラ科   | ボラ   | 1   | 1    |      | 1    | 3   |
| 5   |       |         |       | nt"科  | シロウオ | 1   | 2    |      |      | 3   |
| 6   |       |         |       |       | マハゼ  |     |      | 1    |      | 1   |
| 7   |       |         |       |       | ヒメハゼ | 1   |      |      |      | 1   |
| 8   |       |         | フグー目  | 7グ科   | クサフグ | 56  | 76   | 46   | 44   | 222 |
|     |       | 1門1綱3目6 | 6科    |       | 種 数  | 5   | 5    | 4    | 3    | 8   |




瑞梅寺川で確認されたシロウオ

## <u>カブトガニ</u>

- ・カブトガニの卵塊は、昨年度と同程度の12地点で確認された。
- ・確認箇所は、過年度と同様に休憩所北側および南側であり、主な確認位置は主に四所神社前の階段よりも 南側の砂時の場所であった。





カブトガニの確認地点

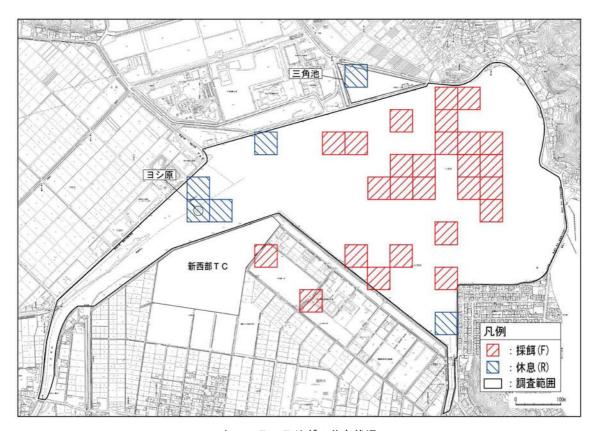
#### <u>ハクセンシオマネキ</u>

・ハクセンシオマネキは、瑞梅寺川の右岸や瑞梅寺川と弁天川の間にあるヨシ原の縁辺部、今津干潟北側と 南側に点在する砂泥地に分布していた。



ハクセンシオマネキの分布状況




今津干潟で確認されたハクセンシオマネキ

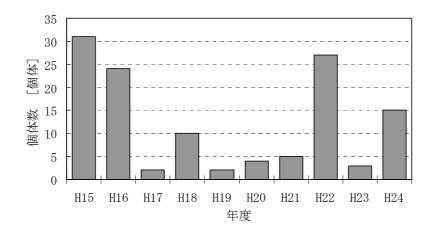
#### <u>クロツラヘラ</u>サギ

- ・クロツラヘラサギは、瑞梅寺川河口および今津干潟内で合計 21 羽確認された。
- ・干潮時に水崎川の澪すじ付近や田尻の前面で採餌していたクロツラヘラサギは、潮が満ち始めると瑞梅寺河口のヨシ原や三角池の休息場へと移動し始め、平均水面(D.L.+1.1m)の水位になると、クロツラヘラサギのほとんどがヨシ原内と三角池北側で休息していた。

潮が引き始め、再び干潮時になると、クロツラヘラサギは干潟全域や周辺の池などに移動し、再び採餌していた。

・瑞梅寺川河口や干潟域ほか、今津干潟北側にある三角池で休息している状況も確認された。




クロツラヘラサギの分布状況



クロツラヘラサギの休息 (左) と採餌 (右) の様子

#### モクズガニ

・モクズガニは周船寺川河口部 (R-1) において、繁殖行動のために降河中であった成体\*と考えられる個体が 9 月から 11 月の間に 15 個体確認された。



注)H15~21 年度は 11 月、22 年度と 23 年度以降は 9~11 月に調査した結果による モクズガニの確認個体数の経年変化



## 環境監視項目 2:放流河川水質

気象状況 (p. 4、p. 9、p. 10、p. 12)

|            | , , , | γ, μ. τος | p ,       |            |        |         |           |
|------------|-------|-----------|-----------|------------|--------|---------|-----------|
|            | 降水量   | 気温        | 全天日射量     |            | 降水量    | 気温      | 全天日射量     |
| 年月日        |       |           |           | 年月日        |        |         |           |
|            | (mm)  | (°C)      | (MJ/m²·日) |            | (mm)   | (°C)    | (MJ/m²·日) |
| H24. 4. 1  | 0.0   | 10.4      | 23.5      | H24. 6. 1  | 0.0    | 21.6    | 21. 3     |
| H24. 4. 2  | 0. 5  | 14. 8     | 21. 2     | H24. 6. 2  | 0.0    | 22. 6   | 10. 4     |
|            |       |           |           |            |        |         |           |
| H24. 4. 3  |       | 13. 0     | 5. 9      | H24. 6. 3  | 0.0    | 23.0    | 23. 9     |
| H24.4.4    | 0.0   | 12.0      | 22.8      | H24. 6. 4  | 0.0    | 23.8    | 10.0      |
| H24.4.5    | 0.0   | 14.6      | 14. 4     | H24. 6. 5  | 0.0    | 22.3    | 10.6      |
| H24. 4. 6  |       | 12. 3     | 24. 3     | H24. 6. 6  | 0.0    | 22.7    | 19. 5     |
| H24. 4. 7  |       |           | 25. 4     | H24. 6. 7  | 0.0    | 23. 4   | 19. 8     |
|            |       | 10.4      |           |            |        |         |           |
| H24. 4. 8  |       | 14.0      | 22.7      | H24. 6. 8  | 1.0    | 22.9    | 7. 9      |
| H24. 4. 9  |       | 18.0      | 20.1      | H24. 6. 9  | 0.0    | 22.0    | 12.8      |
| H24. 4. 10 | 1.5   | 17. 1     | 5. 1      | H24. 6. 10 | 0.0    | 23. 1   | 24. 9     |
| H24. 4. 11 | 38. 0 | 17. 5     | 9.2       | H24. 6. 11 | 0.0    | 22.8    | 7.8       |
| H24. 4. 12 | 0.0   | 16. 6     | 22.6      | H24. 6. 12 | 0.0    | 24. 2   | 18. 0     |
|            |       |           |           |            |        |         |           |
| H24. 4. 13 |       | 13. 4     | 4.5       | H24. 6. 13 | 0.0    | 24. 2   | 23. 3     |
| H24. 4. 14 |       | 14. 3     | 17.3      | H24. 6. 14 | 0.0    | 24. 4   | 24. 6     |
| H24. 4. 15 | 0.0   | 15. 7     | 22.7      | H24. 6. 15 | 34.0   | 23.4    | 5. 4      |
| H24. 4. 16 | 0.0   | 18.3      | 23. 2     | H24. 6. 16 | 36.5   | 21.6    | 2.0       |
| H24. 4. 17 | 0.0   | 16. 0     | 22. 5     | H24. 6. 17 | 0.0    | 23. 2   | 18. 9     |
| H24. 4. 18 | 0.0   | 15. 8     | 22.6      | H24. 6. 18 | 60. 5  | 21. 9   | 4. 1      |
|            |       |           |           |            |        |         |           |
| H24. 4. 19 |       | 16.6      | 7.7       | H24. 6. 19 | 11.0   | 22.3    | 6. 4      |
| H24. 4. 20 |       | 18. 5     | 15. 9     | H24. 6. 20 | 0.0    | 22.7    | 21. 1     |
| H24. 4. 21 | 1.0   | 19. 2     | 6.1       | H24. 6. 21 | 5.5    | 21.7    | 7. 1      |
| H24. 4. 22 | 2.5   | 19. 1     | 20.2      | H24. 6. 22 | 0.0    | 22.7    | 23. 1     |
| H24. 4. 23 |       | 18. 3     | 21.1      | H24. 6. 23 | 0.5    | 23.6    | 10. 1     |
| H24. 4. 24 | 0. 0  | 20. 0     | 22. 2     | H24. 6. 24 | 120. 5 | 22. 0   | 1. 6      |
|            |       |           |           |            |        |         |           |
| H24. 4. 25 | 7.0   | 19. 5     | 2.4       | H24. 6. 25 | 6.5    | 22.1    | 5. 1      |
| H24. 4. 26 |       | 16. 9     | 23. 1     | H24. 6. 26 | 0.0    | 24. 3   | 13. 3     |
| H24. 4. 27 | 0.0   | 16. 2     | 26. 2     | H24. 6. 27 | 11.5   | 22.1    | 4. 7      |
| H24. 4. 28 | 0.0   | 18.8      | 26. 2     | H24. 6. 28 | 1.0    | 22.7    | 18.6      |
| H24. 4. 29 | 0.0   | 19.8      | 13.6      | H24. 6. 29 | 0.0    | 24.4    | 15.8      |
| H24. 4. 30 |       | 17. 7     | 3. 7      | H24. 6. 30 | 0.0    | 27. 9   | 13. 7     |
| H24. 5. 1  |       |           |           | H24. 7. 1  | 5.0    |         | 13. 7     |
|            |       | 21. 2     | 10.3      |            |        | 26.8    |           |
| H24. 5. 2  | 11.0  | 18.6      | 5. 2      | H24. 7. 2  | 0.0    | 26.0    | 6.8       |
| H24. 5. 3  | 1.5   | 16. 7     | 4.5       | H24. 7. 3  | 102.5  | 24.5    | 6. 4      |
| H24. 5. 4  | 0.0   | 17.0      | 16.0      | H24.7.4    | 21.5   | 25. 1   | 4. 6      |
| H24. 5. 5  | 0.0   | 21. 7     | 24.8      | H24. 7. 5  | 10.5   | 27.7    | 12.0      |
| H24. 5. 6  | 0.0   | 21. 9     | 24. 1     | H24. 7. 6  | 0.0    | 29.6    | 12. 9     |
| H24. 5. 7  | 0.0   | 22. 8     | 17.5      | H24. 7. 7  | 0.0    | 24. 7   | 10. 6     |
|            |       |           |           |            |        |         |           |
| H24. 5. 8  |       | 23. 1     | 16. 0     | H24. 7. 8  | 0.0    | 23.8    | 25. 4     |
| H24. 5. 9  |       | 21.0      | 25.3      | H24.7.9    | 0.0    | 24. 4   | 25. 9     |
| H24. 5. 10 | 0.0   | 18. 5     | 18. 3     | H24. 7. 10 | 0.0    | 27.8    | 20.8      |
| H24. 5. 11 | 0.0   | 16. 4     | 22.7      | H24. 7. 11 | 13.5   | 27.7    | 4.8       |
| H24. 5. 12 |       | 16. 3     | 27.1      | H24. 7. 12 | 0.0    | 28. 9   | 14. 4     |
| H24. 5. 13 |       | 18. 4     | 15. 3     | H24. 7. 13 | 126. 5 | 25. 0   | 1. 3      |
| H24. 5. 14 |       | 20. 3     | 7.9       | H24. 7. 14 |        | 26. 3   | 6. 3      |
|            |       |           |           |            | 85.0   |         |           |
| H24. 5. 15 |       | 19. 5     | 9.1       | H24. 7. 15 | 0.0    | 30. 2   | 20. 8     |
| H24. 5. 16 |       | 22. 0     | 23.6      | H24. 7. 16 | 81.5   | 26. 9   | 5. 4      |
| H24. 5. 17 |       | 21.8      | 16.7      | H24. 7. 17 | 0.0    | 29.6    | 20.8      |
| H24. 5. 18 | 0.0   | 18. 9     | 25. 5     | H24. 7. 18 | 0.0    | 30.8    | 20. 2     |
| H24. 5. 19 |       | 19. 2     | 14. 2     | H24. 7. 19 | 1.0    | 29.6    | 11. 2     |
| H24. 5. 20 |       | 20. 7     | 10. 0     | H24. 7. 20 | 17. 0  | 27. 4   | 13. 1     |
|            |       |           |           |            |        |         |           |
| H24. 5. 21 | 6.0   | 19. 3     | 11.4      | H24. 7. 21 | 0.0    | 27.8    | 13. 1     |
| H24. 5. 22 | 0.0   | 20. 7     | 26. 0     | H24. 7. 22 | 0.0    | 28. 4   | 23. 0     |
| H24. 5. 23 | 0.0   | 19.6      | 12.9      | H24. 7. 23 | 0.0    | 28.7    | 24. 6     |
| H24. 5. 24 |       | 21.0      | 13. 1     | H24. 7. 24 | 0.0    | 29.5    | 24. 0     |
| H24. 5. 25 |       | 18. 7     | 7. 6      | H24. 7. 25 | 0.0    | 29.6    | 22. 3     |
| H24. 5. 26 |       | 20. 0     | 16. 4     | H24. 7. 26 | 0.0    | 29. 9   | 22. 8     |
|            |       |           |           |            |        |         |           |
| H24. 5. 27 | 0.0   | 21. 5     | 26.9      | H24. 7. 27 | 0.0    | 30. 2   | 16. 6     |
| H24. 5. 28 |       | 21. 7     | 26. 1     | H24. 7. 28 | 0.0    | 30. 4   | 25. 8     |
| H24. 5. 29 |       | 22. 2     | 24.0      | H24. 7. 29 | 0.0    | 30. 1   | 21. 6     |
| H24. 5. 30 | 0.0   | 21.7      | 11.6      | H24. 7. 30 | 0.0    | 29.2    | 10. 5     |
| H24. 5. 31 | 0.0   | 21. 1     | 18. 3     | H24. 7. 31 | 0.0    | 31. 1   | 25. 9     |
| 0. 01      |       |           | 10.0      |            | V. V   | ~ 1 • 1 | 20.0      |

気象状況 (p.4、p.9、p.10、p.12)

| ### ### ### ### ### ### ### ### ### ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | XV3X [X/70] |         |       |                           |             |         |       |                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|-------|---------------------------|-------------|---------|-------|----------------------|
| Hear    |             | 降水量     | 気温    | 全天日射量                     |             | 降水量     | 気温    | 全天日射量                |
| H24. 8.1   0.0   30.4   20.3   H24. 10.1   0.0   21.3   16.4   H24. 8.2   0.0   31.5   24.0   H24. 10.2   0.0   20.8   17.0   H24. 8.4   0.0   0.30.9   23.4   H24. 10.3   0.0   21.3   19.1   H24. 8.6   0.0   30.5   20.8   H24. 10.6   0.0   20.5   16.7   H24. 8.6   0.0   30.5   20.8   H24. 10.6   0.0   20.9   5.1   H24. 8.8   0.0   28.5   17.9   H24. 8.8   0.0   28.5   17.9   H24. 8.8   0.0   28.5   17.9   H24. 8.1   0.0   22.7   4   10.5   10.0   20.5   16.7   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2   19.2 | 年月日         |         |       | $(M.1/m^2 \cdot \square)$ | 年月日         |         |       | $(M.1/m^2. \square)$ |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | (111117 |       |                           |             | (111117 |       | (MO/III - H)         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H24. 8. 1   | 0.0     |       |                           | H24. 10. 1  | 0.0     |       | 16.4                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H24. 8. 2   | 0.0     | 31. 5 | 24.0                      | H24. 10. 2  | 0.0     | 20.8  | 17.0                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 0.0     |       | 24.6                      | H24 10 3    | 0.0     |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             | 0.0     |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H24.8.7     | 4.5     | 29. 2 | 11.9                      | H24. 10. 7  | 0.0     | 21.3  | 16.9                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 0.0     | 28. 5 | 17. 9                     |             | 0.0     | 20.8  | 18.4                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| H24, 8, 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       | 12. 5                     |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H24. 8. 13  | 13.0    | 28. 2 | 9. 2                      | H24. 10. 13 | 0.0     | 19. 1 | 14.7                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H24, 8, 14  | 47. 5   | 26. 8 | 5. 0                      |             | 0. 0    | 19. 9 |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       | 15. 4                     |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 0.0     | 29. 9 |                           |             | 0.0     |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H24. 8. 19  | 0.0     | 30.0  | 21. 7                     | H24. 10. 19 | 0. 0    | 18. 3 |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H24. 8. 25  | 0.0     | 29.8  | 21.7                      | H24. 10. 25 | 0.0     | 17.0  | 10.3                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 0.0     |       | 22. 0                     | H24_10_26   | 2.0     | 16.8  |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 3.0     |       |                           |             | 0.0     |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H24. 8. 31  | 0.0     | 25.6  | 15.8                      | H24. 10. 31 | 1.0     | 14.4  | 10.5                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 0.0     | 25. 4 | 21.8                      | H24, 11, 1  | 0.0     | 13. 9 | 8. 5                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H24. 9. 6   | 2.5     | 26. 4 | 15.0                      | H24.11.6    | 0.0     | 16.0  | 9. 7                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H24. 9. 7   | 2.0     | 27.6  | 16.9                      | H24.11.7    | 0.0     | 15.7  | 9. 5                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         | 26. 9 |                           |             | 0.0     | 14.6  |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         | 25. 2 |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H24. 9. 13  |         |       | 18.8                      | H24. 11. 13 | 10.0    | 13. 2 |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         | 26. 2 |                           | H24. 11. 14 |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H24. 9. 19  | 0.0     | 22.8  | 16. 4                     | H24. 11. 19 | 0.0     | 12.3  | 10. 5                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H24. 9. 20  | 0.0     | 21. 9 | 14. 3                     | H24. 11. 20 | 0.0     | 12.0  | 13. 6                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |       |                           |             |         |       |                      |
| H24. 9. 23       0. 0       21. 3       16. 2       H24. 11. 23       0. 0       14. 6       4. 5         H24. 9. 24       0. 0       22. 4       11. 8       H24. 11. 24       18. 5       11. 3       3. 2         H24. 9. 25       0. 0       23. 5       17. 3       H24. 11. 25       0. 5       10. 4       12. 4         H24. 9. 26       0. 0       23. 2       19. 7       H24. 11. 26       12. 5       11. 4       1. 8         H24. 9. 27       0. 0       23. 5       18. 9       H24. 11. 27       0. 0       8. 0       5. 1         H24. 9. 28       4. 0       22. 4       19. 2       H24. 11. 28       0. 0       9. 4       8. 0         H24. 9. 29       0. 0       20. 7       4. 1       H24. 11. 29       2. 0       10. 2       2. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |       |                           |             |         |       |                      |
| H24. 9. 24       0. 0       22. 4       11. 8       H24. 11. 24       18. 5       11. 3       3. 2         H24. 9. 25       0. 0       23. 5       17. 3       H24. 11. 25       0. 5       10. 4       12. 4         H24. 9. 26       0. 0       23. 2       19. 7       H24. 11. 26       12. 5       11. 4       1. 8         H24. 9. 27       0. 0       23. 5       18. 9       H24. 11. 27       0. 0       8. 0       5. 1         H24. 9. 28       4. 0       22. 4       19. 2       H24. 11. 28       0. 0       9. 4       8. 0         H24. 9. 29       0. 0       20. 7       4. 1       H24. 11. 29       2. 0       10. 2       2. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |         |       |                           |             |         |       |                      |
| H24. 9. 25       0. 0       23. 5       17. 3       H24. 11. 25       0. 5       10. 4       12. 4         H24. 9. 26       0. 0       23. 2       19. 7       H24. 11. 26       12. 5       11. 4       1. 8         H24. 9. 27       0. 0       23. 5       18. 9       H24. 11. 27       0. 0       8. 0       5. 1         H24. 9. 28       4. 0       22. 4       19. 2       H24. 11. 28       0. 0       9. 4       8. 0         H24. 9. 29       0. 0       20. 7       4. 1       H24. 11. 29       2. 0       10. 2       2. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | п24. 9. 23  |         |       |                           |             |         |       |                      |
| H24. 9. 26       0. 0       23. 2       19. 7       H24. 11. 26       12. 5       11. 4       1. 8         H24. 9. 27       0. 0       23. 5       18. 9       H24. 11. 27       0. 0       8. 0       5. 1         H24. 9. 28       4. 0       22. 4       19. 2       H24. 11. 28       0. 0       9. 4       8. 0         H24. 9. 29       0. 0       20. 7       4. 1       H24. 11. 29       2. 0       10. 2       2. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |       |                           |             |         |       |                      |
| H24. 9. 27       0. 0       23. 5       18. 9       H24. 11. 27       0. 0       8. 0       5. 1         H24. 9. 28       4. 0       22. 4       19. 2       H24. 11. 28       0. 0       9. 4       8. 0         H24. 9. 29       0. 0       20. 7       4. 1       H24. 11. 29       2. 0       10. 2       2. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |         |       | 17. 3                     |             |         | 10.4  | 12. 4                |
| H24. 9. 27       0. 0       23. 5       18. 9       H24. 11. 27       0. 0       8. 0       5. 1         H24. 9. 28       4. 0       22. 4       19. 2       H24. 11. 28       0. 0       9. 4       8. 0         H24. 9. 29       0. 0       20. 7       4. 1       H24. 11. 29       2. 0       10. 2       2. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H24. 9. 26  | 0.0     |       | 19. 7                     | H24. 11. 26 | 12. 5   |       |                      |
| H24. 9. 28       4. 0       22. 4       19. 2       H24. 11. 28       0. 0       9. 4       8. 0         H24. 9. 29       0. 0       20. 7       4. 1       H24. 11. 29       2. 0       10. 2       2. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |         |       |                           |             |         |       |                      |
| H24. 9. 29 0. 0 20. 7 4. 1 H24. 11. 29 2. 0 10. 2 2. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |         |       |                           |             |         |       |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |         |       |                           |             |         |       |                      |
| H24. 9. 30    U.5     21. 2     H24. 11. 30    0. 0   10. 0   5. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |         |       |                           |             |         |       |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H24. 9. 30  | 0.5     | 21.2  | 2. 2                      | н24.11.30   | 0.0     | 10.0  | 5. 5                 |

気象状況 (p.4、p.9、p.10、p.12)

| 年月日                        | 降水量           | 気温            | 全天日射量          | 年月日                      | 降水量           | 気温             | 全天日射量          |
|----------------------------|---------------|---------------|----------------|--------------------------|---------------|----------------|----------------|
|                            | (mm)          | (°C)          | (MJ/m²·日)      |                          | (mm)          | (°C)           | (MJ/m²·目)      |
| H24. 12. 1<br>H24. 12. 2   | 0.0           | 9.5           | 7. 0           | H25. 2. 1<br>H25. 2. 2   | 13. 0         | 12. 0<br>12. 3 | 1. 3<br>13. 8  |
| H24. 12. 2                 | 0. 0<br>7. 0  | 8. 1<br>10. 2 | 9.6            | H25. 2. 3                | 0. 5          | 9. 7           | 13. 8          |
| H24. 12. 4                 | 0. 5          | 8.4           | 10.8           | H25. 2. 4                | 2. 5          | 12. 2          | 1. 1           |
| H24. 12. 5                 | 2.5           | 7.4           | 3.8            | H25. 2. 5                | 12.0          | 8.8            | 4. 1           |
| H24. 12. 6                 | 0.5           | 5. 4          | 4.8            | H25. 2. 6                | 2.0           | 8. 7           | 2.0            |
| H24. 12. 7<br>H24. 12. 8   | 9. 5          | 7. 3<br>8. 3  | 7. 3<br>6. 7   | H25. 2. 7<br>H25. 2. 8   | 0.0           | 6. 0<br>0. 6   | 8. 7<br>5. 7   |
| H24. 12. 9                 | 0.0           | 5. 6          | 6. 2           | H25. 2. 9                | 0.0           | 3. 7           | 8. 1           |
| H24. 12. 10                | 0.0           | 5. 4          | 6. 7           | H25. 2. 10               | 0.0           | 5. 4           | 16. 1          |
| H24. 12. 11                | 0.0           | 5.1           | 6.8            | H25. 2. 11               | 0.0           | 5. 6           | 13. 9          |
| H24. 12. 12<br>H24. 12. 13 | 0.0           | 5. 5<br>7. 4  | 11. 0<br>12. 0 | H25. 2. 12<br>H25. 2. 13 | 5. 0          | 5. 5<br>6. 2   | 2. 9<br>16. 0  |
| H24. 12. 14                | 5. 0          | 11.6          | 2. 7           | H25. 2. 14               | 0. 5          | 7. 1           | 10. 1          |
| H24. 12. 15                | 11.0          | 13.3          | 1. 7           | H25. 2. 15               | 14. 5         | 7. 7           | 8. 2           |
| H24. 12. 16                | 0.0           | 11.6          | 8.8            | H25. 2. 16               | 0.0           | 7. 0           | 15. 4          |
| H24. 12. 17<br>H24. 12. 18 | 0.0           | 11. 6<br>7. 3 | 3. 5<br>3. 3   | H25. 2. 17<br>H25. 2. 18 | 0. 0<br>15. 0 | 7. 0<br>10. 4  | 4. 2<br>0. 8   |
| H24. 12. 19                | 0.0           | 5. 1          | 10. 7          | H25. 2. 19               | 7. 0          | 7. 2           | 6. 7           |
| H24. 12. 20                | 0.0           | 5.6           | 11.5           | H25. 2. 20               | 0.0           | 6.0            | 18. 1          |
| H24. 12. 21                | 8.0           | 8.8           | 2. 4           | H25. 2. 21               | 0.0           | 5. 1           | 12.4           |
| H24. 12. 22<br>H24. 12. 23 | 2. 5<br>0. 5  | 10. 5<br>5. 5 | 0.8<br>4.1     | H25. 2. 22<br>H25. 2. 23 | 0.0           | 6. 9<br>8. 0   | 13. 6<br>15. 4 |
| H24. 12. 24                | 0.0           | 2.8           | 6. 5           | H25. 2. 24               | 0.0           | 7. 8           | 18. 9          |
| H24. 12. 25                | 1.0           | 5. 4          | 1.9            | H25. 2. 25               | 0.0           | 8.3            | 17. 9          |
| H24. 12. 26                | 0.0           | 5. 7          | 7.4            | H25. 2. 26               | 7.0           | 9.9            | 2.8            |
| H24. 12. 27<br>H24. 12. 28 | 0. 0<br>29. 5 | 5. 6<br>8. 7  | 11. 0<br>1. 4  | H25. 2. 27<br>H25. 2. 28 | 0. 5          | 11. 0<br>11. 6 | 16. 4<br>18. 7 |
| H24. 12. 29                | 0.0           | 10. 9         | 7. 1           | H25. 3. 1                | 11. 5         | 12. 9          | 1. 4           |
| H24. 12. 30                | 21.0          | 7.2           | 1.1            | H25. 3. 2                | 0.0           | 8. 0           | 13. 9          |
| H24. 12. 31                | 0.0           | 3.8           | 5. 9           | H25. 3. 3                | 0.0           | 7. 5           | 16. 6          |
| H25. 1. 1<br>H25. 1. 2     | 2. 5<br>0. 5  | 4. 9<br>6. 9  | 7. 3<br>1. 5   | H25. 3. 4<br>H25. 3. 5   | 0.0           | 8. 3<br>9. 9   | 15. 9<br>18. 0 |
| H25. 1. 3                  | 0.0           | 2. 7          | 5. 4           | H25. 3. 6                | 0.0           | 10. 9          | 18. 9          |
| H25. 1. 4                  | 0.0           | 2.8           | 7. 1           | H25. 3. 7                | 0.0           | 14.5           | 14. 4          |
| H25. 1. 5                  | 0.0           | 4. 2          | 6. 9           | H25. 3. 8                |               |                |                |
| H25. 1. 6<br>H25. 1. 7     | 0.0           | 4. 5<br>5. 9  | 7. 9<br>7. 3   | H25. 3. 9<br>H25. 3. 10  |               |                |                |
| H25. 1. 8                  | 0.0           | 8. 2          | 9. 1           | H25. 3. 10               |               |                |                |
| H25.1.9                    | 0.0           | 6.4           | 7. 5           | H25. 3. 12               |               |                |                |
| H25. 1. 10                 | 0.0           | 4.2           | 10.7           | H25. 3. 13               |               |                |                |
| H25. 1. 11<br>H25. 1. 12   | 0.0           | 4. 4<br>6. 9  | 12. 9<br>10. 7 | H25. 3. 14<br>H25. 3. 15 |               |                |                |
| H25. 1. 12                 | 15. 0         | 6. 5          | 2. 0           | H25. 3. 16               |               |                |                |
| H25. 1. 14                 | 10.0          | 8. 1          | 7. 2           | H25. 3. 17               |               |                |                |
| H25. 1. 15                 | 0.0           | 6. 9          | 10. 7          | H25. 3. 18               |               |                |                |
| H25. 1. 16<br>H25. 1. 17   | 0. 0<br>14. 5 | 6. 2<br>4. 7  | 4. 0<br>3. 9   | H25. 3. 19<br>H25. 3. 20 |               |                |                |
| H25. 1. 17                 | 3. 0          | 3.6           | 11. 6          | H25. 3. 21               |               |                |                |
| H25. 1. 19                 | 0.0           | 5. 2          | 6.8            | H25. 3. 22               |               |                |                |
| H25. 1. 20                 | 0.0           | 6. 9          | 11. 2          | H25. 3. 23               |               |                |                |
| H25. 1. 21<br>H25. 1. 22   | 3. 5<br>8. 0  | 9. 7<br>10. 6 | 1. 9<br>2. 9   | H25. 3. 24<br>H25. 3. 25 |               |                |                |
| H25. 1. 23                 | 0.0           | 7.8           | 5. 0           | H25. 3. 26               |               |                |                |
| H25. 1. 24                 | 0. 5          | 8. 1          | 8. 0           | H25. 3. 27               |               |                |                |
| H25. 1. 25                 | 0.0           | 5. 1          | 8.8            | H25. 3. 28               |               |                |                |
| H25. 1. 26                 | 0.0           | 4.9           | 9.4            | H25. 3. 29               |               |                |                |
| H25. 1. 27<br>H25. 1. 28   | 0.0           | 3. 6<br>5. 0  | 5. 8<br>13. 3  | H25. 3. 30<br>H25. 3. 31 |               |                |                |
| H25. 1. 29                 | 0.0           | 6. 0          | 12. 3          | 1120, 0, 01              |               | i              |                |
| H25. 1. 30                 | 0.0           | 8.0           | 12.6           |                          |               |                |                |
| H25. 1. 31                 | 0.0           | 9.9           | 12.0           |                          |               |                |                |

## 放流河川水質の季節変化(評価項目、p. 4)

| 年月日         | pH (-) |      | BOD (n | ıg/L) | DO (m | g/L)  | SS (n | ıg/L) | 大腸菌群数  | (MPN/100mL) |
|-------------|--------|------|--------|-------|-------|-------|-------|-------|--------|-------------|
| 十万口         | R-1    | R-3  | R-1    | R-3   | R−1   | R-3   | R−1   | R-3   | R−1    | R-3         |
| H24. 4. 21  | 7. 7   | 7. 9 | 1.3    | 0.8   | 9.4   | 7.4   | 11    | 8     | 230000 | 4900        |
| H24. 5. 21  | 9. 2   | 7.8  | 4.6    | 1.0   | 12.0  | 5. 7  | 18    | 9     | 490    | 3300        |
| H24. 7. 19  | 7. 6   | 7. 6 | <0.5   | 0.7   | 8. 7  | 8.5   | 5     | 4     | 79000  | 79000       |
| H24. 8. 18  | 7. 6   | 7. 5 | 1.0    | 1.0   | 7.7   | 7.2   | 6     | 10    | 110000 | 170000      |
| H24. 9. 16  | 7. 7   | 7.6  | 2.0    | 1.3   | 8. 1  | 8.0   | 15    | 15    | 49000  | 110000      |
| H24. 12. 13 | 7.8    | 7.9  | <0.5   | 0.6   | 11.7  | 9.3   | 2     | 13    | 2200   | 1100        |
| H25. 1. 12  | 7. 5   | 7.6  | 0.5    | 0.8   | 12.2  | 10.0  | 3     | 18    | 790    | 2300        |
| H25. 2. 10  | 7.8    | 7.8  | 0.6    | 0.8   | 12.0  | 12. 1 | 2     | 16    | 790    | 330         |

#### 放流河川水質の季節変化(参考項目、p. 4~5)

| 年月日         | 河川流量(m <sup>3</sup> /日) | 水温    | (°C) | ATU-BOD | (mg/L) | COD (n | ng/L) | 塩化物イオ: | ン (mg/L) |
|-------------|-------------------------|-------|------|---------|--------|--------|-------|--------|----------|
| 十万日         | R-1                     | R-1   | R-3  | R-1     | R-3    | R-1    | R-3   | R-1    | R-3      |
| H24. 4. 21  |                         | 18. 1 | 17.7 | 1. 2    | 0.8    | 3. 3   | 3. 5  | 17     | 2400     |
| H24. 5. 21  |                         | 19.8  | 18.7 | 4. 2    | 1.0    | 7.0    | 3. 5  | 15     | 12000    |
| H24. 7. 19  |                         | 22.3  | 14.9 | <0.5    | 0.7    | 2.9    | 2.8   | 12     | 16       |
| H24.8.18    |                         | 24. 5 | 27.4 | 1.0     | 1.0    | 4.0    | 5. 1  | 12     | 820      |
| H24. 9. 16  |                         | 22.6  | 22.9 | 1. 2    | 1. 2   | 5.0    | 6.0   | 11     | 23       |
| H24. 12. 13 |                         | 8. 7  | 7.4  | <0.5    | 0.5    | 1.5    | 2.6   | 16     | 12000    |
| H25. 1. 12  |                         | 7.6   | 7.8  | 0.5     | 0.8    | 2. 1   | 2. 9  | 16     | 8700     |
| H25. 2. 10  |                         | 6.8   | 7.2  | <0.5    | 0.7    | 1.8    | 3. 0  | 17     | 7400     |

| 年月日         | EC (m | S/m) | T-N (n | ng/L) | 1) N-0 | ng/L) | NH <sub>4</sub> -N | (mg/L) | $NO_2$ -N (mg/L) |       |  |
|-------------|-------|------|--------|-------|--------|-------|--------------------|--------|------------------|-------|--|
| 十万百         | R-1   | R-3  | R-1    | R-3   | R-1    | R-3   | R-1                | R-3    | R-1              | R-3   |  |
| H24. 4. 21  | 21.7  | 761  | 0.98   | 0.82  | 0.23   | 0.26  | 0.07               | 0.05   | <0.02            | <0.02 |  |
| H24. 5. 21  | 18.6  | 3210 | 0.53   | 0.67  | 0.53   | 0.29  | <0.02              | 0.21   | <0.02            | <0.02 |  |
| H24. 7. 19  | 15. 7 | 17.2 | 1. 7   | 1. 7  | 0.28   | 0.26  | 0.02               | 0.04   | <0.02            | <0.02 |  |
| H24.8.18    | 18. 2 | 290  | 1.8    | 1.6   | 0.35   | 0.40  | 0.05               | 0.10   | <0.02            | <0.02 |  |
| H24. 9. 16  | 17. 0 | 20   | 1.5    | 1.4   | 0.27   | 0.23  | 0.03               | 0.07   | <0.02            | <0.02 |  |
| H24. 12. 13 | 20.7  | 3000 | 1. 1   | 0.8   | 0.09   | 0.21  | 0.03               | 0.16   | <0.02            | <0.02 |  |
| H25. 1. 12  | 20. 1 | 2400 | 1.3    | 0.8   | 0.07   | 0.20  | 0.03               | 0.15   | <0.02            | <0.02 |  |
| H25. 2. 10  | 19.8  | 1830 | 1.5    | 1.0   | 0.10   | 0.18  | <0.02              | 0.15   | <0.02            | <0.02 |  |

| 年月日         | $NO_3$ -N (mg/L) |      | T-P (r | ng/L) | P0 <sub>4</sub> -P ( | mg/L) | クロロフィル | νa (μg/L) | TOC (r | ng/L) |
|-------------|------------------|------|--------|-------|----------------------|-------|--------|-----------|--------|-------|
| 十万日         | R-1              | R-3  | R-1    | R-3   | R-1                  | R-3   | R-1    | R-3       | R−1    | R-3   |
| H24. 4. 21  | 0.68             | 0.51 | 0.17   | 0.079 | 0.047                | 0.033 | 12     | 16        | 1.8    | 2. 1  |
| H24. 5. 21  | <0.02            | 0.17 | 0.13   | 0.11  | 0.030                | 0.077 | 58     | 3. 3      | 3.8    | 2.7   |
| H24. 7. 19  | 1.4              | 1.4  | 0.15   | 0.15  | 0.13                 | 0.12  | 3. 1   | 1. 9      | 1.5    | 1.7   |
| H24. 8. 18  | 1.4              | 1. 1 | 0.15   | 0.18  | 0. 12                | 0. 15 | 3. 0   | 3. 4      | 2.3    | 3. 5  |
| H24. 9. 16  | 1. 2             | 1. 1 | 0.15   | 0.21  | 0.10                 | 0.14  | 6. 5   | 5. 5      | 2. 1   | 3. 1  |
| H24. 12. 13 | 1.0              | 0.40 | 0.042  | 0.068 | 0.028                | 0.034 | 1.8    | 1. 6      | <1.0   | 1.9   |
| H25. 1. 12  | 1. 2             | 0.43 | 0.053  | 0.074 | 0.002                | 0.025 | 2. 1   | 1. 9      | <1.0   | 1. 9  |
| H25. 2. 10  | 1.4              | 0.67 | 0.049  | 0.063 | 0.032                | 0.018 | 1.8    | 3. 2      | 1.0    | 1.7   |

## 環境監視項目4:今津干潟および周辺の水環境

## 干潟・海域の水質の季節変化 (評価項目、p. 9)

|             |    | SS (m | g/L) |    |     | COD (r | ng/L) |      |      | T-N (n | ng/L) |      |
|-------------|----|-------|------|----|-----|--------|-------|------|------|--------|-------|------|
| 年月日         | H- | H-4   |      | -1 | H-  | -4     | S-    | -1   | H-   | -4     | S-1   |      |
|             | 表層 | 底層    | 表層   | 底層 | 表層  | 底層     | 表層    | 底層   | 表層   | 底層     | 表層    | 底層   |
| H24. 4. 21  | 2  | 2     | 2    | 2  | 1.8 | 1.7    | 1.7   | 1.5  | 0.36 | 0.33   | 0.26  | 0.37 |
| H24. 5. 21  | 2  | 3     | 2    | 2  | 2.0 | 1.8    | 2.2   | 2. 1 | 0.32 | 0.31   | 0.33  | 0.32 |
| H24. 7. 19  | 4  | 5     | 2    | 3  | 1.6 | 1.7    | 1.8   | 1.3  | 0.48 | 0.41   | 0.25  | 0.41 |
| H24. 8. 18  | 6  | 5     | 3    | 3  | 2.7 | 2.3    | 2.5   | 1.6  | 0.34 | 0.30   | 0.31  | 0.25 |
| H24. 9. 16  | 14 | 13    | 5    | 7  | 2.8 | 2.6    | 2.9   | 2.9  | 0.45 | 0.45   | 0.40  | 0.38 |
| H24. 12. 13 | 5  | 5     | 5    | 19 | 1.5 | 1.3    | 1.5   | 2.0  | 0.28 | 0.27   | 0.28  | 0.29 |
| H25. 1. 12  | 2  | 2     | 3    | 3  | 1.5 | 1.5    | 2.0   | 1.1  | 0.38 | 0.34   | 0.42  | 0.31 |
| H25. 2. 10  | 6  | 5     | 6    | 11 | 1.6 | 1.3    | 1.5   | 1.8  | 0.26 | 0.23   | 0.24  | 0.21 |

| O-N (mg/L)  |      |      |      |      |      | NH <sub>4</sub> -N | (mg/L) |      |       | NO <sub>2</sub> -N ( | (mg/L) |       |
|-------------|------|------|------|------|------|--------------------|--------|------|-------|----------------------|--------|-------|
| 年月日         | H-   | -4   | S-   | -1   | H-   | -4                 | S-     | 1    | H-    | -4                   | S-     | -1    |
|             | 表層   | 底層   | 表層   | 底層   | 表層   | 底層                 | 表層     | 底層   | 表層    | 底層                   | 表層     | 底層    |
| H24. 4. 21  | 0.16 | 0.12 | 0.17 | 0.18 | 0.11 | 0. 12              | 0.05   | 0.11 | <0.02 | <0.02                | <0.02  | <0.02 |
| H24. 5. 21  | 0.17 | 0.15 | 0.21 | 0.20 | 0.12 | 0.12               | 0.09   | 0.09 | <0.02 | <0.02                | <0.02  | <0.02 |
| H24.7.19    | 0.26 | 0.27 | 0.15 | 0.28 | 0.12 | 0.08               | 0.10   | 0.09 | <0.02 | <0.02                | <0.02  | <0.02 |
| H24. 8. 18  | 0.29 | 0.25 | 0.22 | 0.15 | 0.05 | 0.05               | 0.05   | 0.10 | <0.02 | <0.02                | <0.02  | <0.02 |
| H24. 9. 16  | 0.30 | 0.28 | 0.31 | 0.31 | 0.10 | 0.12               | 0.04   | 0.07 | <0.02 | <0.02                | <0.02  | <0.02 |
| H24. 12. 13 | 0.12 | 0.13 | 0.13 | 0.16 | 0.06 | 0.05               | 0.05   | 0.04 | <0.02 | <0.02                | <0.02  | <0.02 |
| H25. 1. 12  | 0.18 | 0.16 | 0.23 | 0.17 | 0.06 | 0.05               | 0.04   | 0.03 | <0.02 | <0.02                | <0.02  | <0.02 |
| H25. 2. 10  | 0.15 | 0.10 | 0.12 | 0.13 | 0.06 | 0.07               | 0.06   | 0.05 | <0.02 | <0.02                | <0.02  | <0.02 |

|             |         | NO <sub>3</sub> -N ( | (mg/L) |       |       | T-P (n | ng/L) |       | PO <sub>4</sub> -P (mg/L) |       |        |        |  |
|-------------|---------|----------------------|--------|-------|-------|--------|-------|-------|---------------------------|-------|--------|--------|--|
| 年月日         | H-4 S-1 |                      | -1     | H-    | -4    | S-1    |       | H-    | -4                        | S-1   |        |        |  |
|             | 表層      | 底層                   | 表層     | 底層    | 表層    | 底層     | 表層    | 底層    | 表層                        | 底層    | 表層     | 底層     |  |
| H24. 4. 21  | 0.09    | 0.09                 | 0.04   | 0.08  | 0.018 | 0.018  | 0.014 | 0.017 | 0.005                     | 0.004 | 0.002  | 0.002  |  |
| H24. 5. 21  | 0.03    | 0.04                 | 0.03   | 0.03  | 0.021 | 0.021  | 0.017 | 0.018 | 0.004                     | 0.004 | <0.001 | <0.001 |  |
| H24. 7. 19  | 0.10    | 0.06                 | <0.02  | 0.04  | 0.053 | 0.046  | 0.026 | 0.032 | 0.029                     | 0.025 | 0.009  | 0.014  |  |
| H24.8.18    | <0.02   | <0.02                | 0.04   | <0.02 | 0.035 | 0.033  | 0.041 | 0.027 | 0.003                     | 0.012 | 0.009  | 0.013  |  |
| H24. 9. 16  | 0.05    | 0.05                 | 0.05   | <0.02 | 0.056 | 0.056  | 0.052 | 0.048 | 0.013                     | 0.020 | 0.007  | 0.004  |  |
| H24. 12. 13 | 0.10    | 0.09                 | 0.10   | 0.09  | 0.019 | 0.015  | 0.023 | 0.025 | 0.003                     | 0.003 | 0.003  | 0.002  |  |
| H25. 1. 12  | 0.14    | 0.13                 | 0.15   | 0.11  | 0.017 | 0.016  | 0.020 | 0.016 | 0.080                     | 0.060 | 0.039  | 0.024  |  |
| H25. 2. 10  | 0.05    | 0.06                 | 0.06   | 0.03  | 0.023 | 0.019  | 0.019 | 0.022 | 0.006                     | 0.007 | 0.004  | 0.004  |  |

|             | クロロ  | フィノ  | Va (μ | g/L) |
|-------------|------|------|-------|------|
| 年月日         | H-   | -4   | S-    | -1   |
|             | 表層   | 底層   | 表層    | 底層   |
| H24. 4. 21  | 1.5  | 1. 2 | 3. 1  | 2.6  |
| H24. 5. 21  | 2. 1 | 1. 9 | 7. 2  | 6.7  |
| H24. 7. 19  | 5. 1 | 3. 9 | 8.3   | 2.2  |
| H24. 8. 18  | 7. 5 | 4.0  | 8.4   | 2.0  |
| H24. 9. 16  | 9.7  | 5. 0 | 14    | 19   |
| H24. 12. 13 | 2. 2 | 1. 9 | 2.6   | 5.3  |
| H25. 1. 12  | 4.2  | 4.6  | 14.0  | 4.8  |
| H25. 2. 10  | 1.5  | 0.9  | 1.4   | 2. 1 |

干潟・海域の水質の季節変化(参考項目、p. 10)

|             |       | 水温    | (°C)  |       | 塩化    | 物イオ   | ン (mg/ | /L)   |      | EC (m | ıS/m) |      |
|-------------|-------|-------|-------|-------|-------|-------|--------|-------|------|-------|-------|------|
| 年月日         | H-    | -4    | S-    | Ļ     | H-    | -4    | S-     | -1    | H    | -4    | S.    | -1   |
|             | 表層    | 底層    | 表層    | 底層    | 表層    | 底層    | 表層     | 底層    | 表層   | 底層    | 表層    | 底層   |
| H24. 4. 21  | 17.0  | 17. 0 | 17.0  | 16. 1 | 18000 | 18000 | 19000  | 19000 | 4410 | 4410  | 4420  | 4560 |
| H24. 5. 21  | 19.5  | 19.5  | 19.3  | 19.3  | 20000 | 20000 | 20000  | 19000 | 4680 | 4650  | 4630  | 4620 |
| H24. 7. 19  | 24. 7 | 24. 2 | 25. 2 | 23.5  | 17000 | 18000 | 20000  | 20000 | 4370 | 4500  | 4610  | 4780 |
| H24. 8. 18  | 28. 7 | 28.4  | 28.9  | 27.3  | 19000 | 18000 | 17000  | 19000 | 4520 | 4530  | 4450  | 4670 |
| H24. 9. 16  | 26. 5 | 26.8  | 26.8  | 27. 1 | 17000 | 17000 | 17000  | 18000 | 4260 | 4280  | 4250  | 4440 |
| H24. 12. 13 | 9.4   | 9.4   | 9.4   | 9.5   | 19000 | 19000 | 19000  | 19000 | 4400 | 4380  | 4330  | 4380 |
| H25. 1. 12  | 9. 1  | 9. 1  | 8.4   | 9.9   | 20000 | 20000 | 20000  | 20000 | 4490 | 4470  | 4450  | 4500 |
| H25. 2. 10  | 9.4   | 9.4   | 9.0   | 10.1  | 20000 | 20000 | 19000  | 20000 | 4270 | 4200  | 4170  | 4220 |

|             |      | TOC (r | ng/L) |      | 水深   | (m)  | 透明度  | (m) |
|-------------|------|--------|-------|------|------|------|------|-----|
| 年月日         | H-   | -4     | S-    | -1   | H-4  | S-1  | H-4  | S-1 |
|             | 表層   | 底層     | 表層    | 底層   | 表層   | 表層   | 表層   | 表層  |
| H24. 4. 21  | 1.2  | 1. 1   | 1. 1  | 1. 1 | 2.1  | 2. 1 | 5.8  | 5.8 |
| H24. 5. 21  | 2.4  | 2.3    | 3.6   | 4.2  | 2.2  | 2.2  | 5. 9 | 5.9 |
| H24. 7. 19  | 1.6  | 1.4    | 1.3   | 1. 1 | 2.2  | 2.2  | 6.0  | 6.0 |
| H24. 8. 18  | 1.9  | 1. 7   | 1. 7  | 1.4  | 2.4  | 2.4  | 6.0  | 6.0 |
| H24. 9. 16  | 2.0  | 1.7    | 1.9   | 1.8  | 3. 1 | 3. 1 | 6.0  | 6.0 |
| H24. 12. 13 | 1. 1 | 1. 1   | 1. 2  | 1.5  | 2.1  | 2. 1 | 5.8  | 5.8 |
| H25. 1. 12  | 1.0  | <1.0   | 1.3   | 1. 1 | 2.3  | 2.3  | 5. 5 | 5.5 |
| H25. 2. 10  | 1. 1 | <1.0   | 1. 1  | 1.2  | 2.2  | 2.2  | 5.7  | 5.7 |

#### 流入河川水質の季節変化(評価項目、p. 12)

|             |     | SS (m | g/L) |     |      | COD (m | g/L) |      |      | T-N (r | ng/L) |      |
|-------------|-----|-------|------|-----|------|--------|------|------|------|--------|-------|------|
| 年月日         | R-5 | R-6   | R-7  | R-8 | R-5  | R-6    | R-7  | R-8  | R-5  | R-6    | R-7   | R-8  |
| H24. 4. 21  | 24  | 6     | 34   | 5   | 4. 5 | 4. 0   | 7.8  | 3.0  | 1.0  | 1.3    | 1.2   | 0.59 |
| H24. 5. 21  | 13  | 2     | 31   | 12  | 4.0  | 5. 0   | 9.4  | 3. 1 | 0.73 | 0.6    | 1.3   | 0.50 |
| H24. 7. 19  | 11  | 12    | 34   | 5   | 6.5  | 8. 9   | 13   | 3. 2 | 1.4  | 1.8    | 1.4   | 0.67 |
| H24. 8. 18  | 16  | 12    | 32   | 5   | 6.0  | 8.6    | 11   | 4.3  | 1.3  | 1.5    | 1.4   | 0.82 |
| H24. 9. 16  | 10  | 28    | 25   | 19  | 4.6  | 10     | 9.0  | 4.7  | 1.0  | 1.7    | 1.2   | 0.66 |
| H24. 12. 13 | 14  | 21    | 11   | 7   | 2.7  | 3.8    | 5.9  | 2.7  | 1.1  | 1.5    | 1.0   | 0.94 |
| H25. 1. 12  | 8   | 2     | 14   | 8   | 2.4  | 2. 9   | 5. 9 | 2.7  | 1.0  | 1.7    | 1.1   | 0.80 |
| H25. 2. 10  | 14  | 7     | 15   | 8   | 3.0  | 3. 4   | 6.3  | 2.9  | 1.0  | 1. 7   | 1.4   | 0.90 |

|             |       | 0-N (n | ng/L) |      | N     | lH₄−N ( | (mg/L) |      |       | $NO_2-N$ | (mg/L) |       |
|-------------|-------|--------|-------|------|-------|---------|--------|------|-------|----------|--------|-------|
| 年月日         | R-5   | R-6    | R-7   | R-8  | R-5   | R-6     | R-7    | R-8  | R-5   | R-6      | R-7    | R-8   |
| H24. 4. 21  | 0.38  | 0.14   | 0.86  | 0.28 | 0. 22 | 0.06    | 0. 12  | 0.09 | <0.02 | <0.02    | <0.02  | <0.02 |
| H24. 5. 21  | 0. 29 | 0.30   | 1.3   | 0.31 | 0.20  | 0.14    | 0.04   | 0.10 | <0.02 | <0.02    | <0.02  | <0.02 |
| H24. 7. 19  | 0.55  | 0.63   | 0.90  | 0.30 | 0.10  | 0.32    | 0. 19  | 0.12 | <0.02 | 0.03     | 0.03   | <0.02 |
| H24. 8. 18  | 0.48  | 0.68   | 0.86  | 0.37 | 0.21  | 0.26    | 0. 23  | 0.13 | <0.02 | 0.03     | 0.03   | <0.02 |
| H24. 9. 16  | 0.20  | 0.69   | 0.54  | 0.22 | 0.08  | 0.25    | 0. 24  | 0.15 | <0.02 | <0.02    | 0.03   | <0.02 |
| H24. 12. 13 | 0.19  | 0.07   | 0.36  | 0.15 | 0.12  | 0.13    | 0.07   | 0.15 | <0.02 | <0.02    | <0.02  | <0.02 |
| H25. 1. 12  | 0.24  | 0.21   | 0.41  | 0.23 | 0.09  | 0.09    | 0.04   | 0.15 | <0.02 | <0.02    | <0.02  | <0.02 |
| H25. 2. 10  | 0. 22 | 0.43   | 0.35  | 0.23 | 0.10  | 0.17    | 0.10   | 0.14 | <0.02 | <0.02    | 0.02   | <0.02 |

### 流入河川水質の季節変化(評価項目、p. 12)

|             |      | NO <sub>3</sub> -N | (mg/L) |       |       | T-P (m | g/L) |       |       | P0 <sub>4</sub> -P | (mg/L) |       |
|-------------|------|--------------------|--------|-------|-------|--------|------|-------|-------|--------------------|--------|-------|
| 年月日         | R-5  | R-6                | R-7    | R-8   | R-5   | R-6    | R-7  | R-8   | R-5   | R-6                | R-7    | R-8   |
| H24. 4. 21  | 0.40 | 1. 1               | 0. 22  | 0. 22 | 0. 15 | 0.12   | 0.41 | 0.072 | 0.064 | 0.092              | 0.13   | 0.044 |
| H24. 5. 21  | 0.24 | 0.13               | <0.02  | 0.09  | 0.14  | 0.12   | 0.41 | 0.088 | 0.083 | 0.067              | 0.26   | 0.049 |
| H24. 7. 19  | 0.75 | 0.82               | 0. 28  | 0.25  | 0.24  | 0.58   | 0.70 | 0.11  | 0.17  | 0.47               | 0.51   | 0.075 |
| H24. 8. 18  | 0.61 | 0.53               | 0. 28  | 0.32  | 0.28  | 0.59   | 0.63 | 0.14  | 0.21  | 0.49               | 0.44   | 0.10  |
| H24. 9. 16  | 0.72 | 0.76               | 0.39   | 0.29  | 0.17  | 0.63   | 0.48 | 0.14  | 0.12  | 0.41               | 0.31   | 0.086 |
| H24. 12. 13 | 0.79 | 1.3                | 0.57   | 0.64  | 0.057 | 0.12   | 0.11 | 0.062 | 0.023 | 0.065              | 0.063  | 0.041 |
| H25. 1. 12  | 0.62 | 1.4                | 0.65   | 0.42  | 0.044 | 0.095  | 0.12 | 0.067 | 0.011 | 0.005              | 0.003  | 0.004 |
| H25. 2. 10  | 0.68 | 1. 1               | 0.95   | 0.53  | 0.071 | 0.093  | 0.14 | 0.070 | 0.027 | 0.067              | 0.080  | 0.039 |

#### 流入河川水質の季節変化(参考項目、p. 13)

|             | クロロ  | フィル  | ⁄a (με | g/L) |
|-------------|------|------|--------|------|
| 年月日         | R-5  | R-6  | R-7    | R-8  |
| H24. 4. 21  | 18   | 7. 1 | 45     | 8.0  |
| H24. 5. 21  | 4. 2 | 2.6  | 50     | 5. 2 |
| H24. 7. 19  | 11   | 6.8  | 30     | 5.4  |
| H24. 8. 18  | 5.4  | 18   | 25     | 3.7  |
| H24. 9. 16  | 2.4  | 7. 9 | 11     | 2.7  |
| H24. 12. 13 | 1.4  | 2.8  | 2.4    | 0.7  |
| H25. 1. 12  | 2.6  | 3.3  | 4.0    | 1.4  |
| H25. 2. 10  | 4.8  | 3.4  | 1.0    | 1.7  |

|             |       | 水温    | (°C)  |       | 塩化物  | 勿イオ | ン(m  | g/L)  |      | EC (n | nS/m) |      |
|-------------|-------|-------|-------|-------|------|-----|------|-------|------|-------|-------|------|
| 年月日         | R-5   | R-6   | R-7   | R-8   | R-5  | R-6 | R-7  | R-8   | R-5  | R-6   | R-7   | R-8  |
| H24. 4. 21  | 17. 2 | 17. 5 | 18. 0 | 17.6  | 9200 | 86  | 4600 | 13000 | 2520 | 48. 5 | 1380  | 3270 |
| H24. 5. 21  | 20.6  | 21.4  | 21. 5 | 21.2  | 9800 | 54  | 4200 | 16000 | 2600 | 38.6  | 1230  | 4000 |
| H24. 7. 19  | 28. 2 | 27.9  | 29.7  | 27.4  | 1800 | 35  | 51   | 13000 | 587  | 30.9  | 38. 4 | 3300 |
| H24. 8. 18  | 31. 1 | 30.9  | 32. 2 | 30.5  | 3000 | 26  | 67   | 7800  | 990  | 25.8  | 46.6  | 2230 |
| H24. 9. 16  | 24. 4 | 22.4  | 25. 0 | 25. 1 | 44   | 25  | 37   | 3600  | 21.7 | 24. 4 | 33.8  | 1110 |
| H24. 12. 13 | 10.8  | 11.3  | 9.8   | 10.2  | 7200 | 42  | 870  | 10000 | 2010 | 34. 5 | 324   | 2590 |
| H25. 1. 12  | 10.5  | 10.4  | 9.5   | 9.4   | 9800 | 37  | 600  | 11000 | 2310 | 29.6  | 239   | 2960 |
| H25. 2. 10  | 11. 1 | 10.7  | 8.7   | 9.6   | 8700 | 57  | 320  | 7700  | 2080 | 37. 1 | 139   | 1880 |

|             |      | TOC (r | ng/L) |      |      | 水深    | (m)  |      |
|-------------|------|--------|-------|------|------|-------|------|------|
| 年月日         | R-5  | R-6    | R-7   | R-8  | R-5  | R-6   | R-7  | R-8  |
| H24. 4. 21  | 2.5  | 1.8    | 5. 4  | 2.0  | 0.30 | 0.20  | 0.50 | 0.40 |
| H24. 5. 21  | 2.9  | 3. 6   | 8. 1  | 2. 4 | 0.40 | 0. 27 | 0.53 | 0.39 |
| H24. 7. 19  | 4. 1 | 5.6    | 7. 9  | 2. 5 | 0.50 | 0.30  | 0.50 | 0.60 |
| H24.8.18    | 3. 7 | 4.9    | 7.6   | 2.8  | 0.30 | 0.25  | 0.45 | 0.50 |
| H24. 9. 16  | 2.3  | 6.0    | 5. 6  | 2. 7 | 0.70 | 0.50  | 0.50 | 0.70 |
| H24. 12. 13 | 1.7  | 1.9    | 4.0   | 1. 7 | 0.30 | 0.20  | 0.40 | 0.40 |
| H25. 1. 12  | 2.0  | 1.3    | 4. 1  | 1. 7 | 0.30 | 0.20  | 0.50 | 0.60 |
| H25. 2. 10  | 1.9  | 2. 2   | 4. 6  | 2. 2 | 0.30 | 0.30  | 0.50 | 0.50 |

# 環境監視項目5:今津干潟および周辺の底質

#### 標高の季節変化(p. 15)

| 年月日         |       | R-4   |        |       |        | H-2    |        |        |        |        | H-5    |        |        |
|-------------|-------|-------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 4月口         | 平均值   | 最大値   | 最小値    | Om    | 50m    | 100m   | 150m   | 200m   | Om     | 50m    | 100m   | 150m   | 200m   |
| H24. 5. 21  | 0.054 | 0.096 | 0.000  | _     | _      | _      | _      | _      | _      | _      | _      | _      | _      |
| H24. 8. 31  | 0.057 | 0.112 | -0.004 | 0.437 | -0.116 | -0.366 | -0.561 | -0.548 | 0. 283 | -0.042 | -0.087 | -0.057 | -0.057 |
| H24. 11. 12 | 0.058 | 0.110 | -0.002 | _     | _      | _      | _      | _      | _      | _      | _      | _      | _      |
| H25. 1. 12  | 0.067 | 0.111 | 0.013  | 0.436 | -0.118 | -0.358 | -0.538 | -0.522 | 0.274  | -0.054 | -0.085 | -0.060 | -0.053 |

#### 底質の季節変化 (p. 16)

|        |     | COI | Dsed ( | mg/g) | )    |      |      | 強熱   | 減量   | (%)  |      |      | 含     | 水比(9  | 6)    |     |
|--------|-----|-----|--------|-------|------|------|------|------|------|------|------|------|-------|-------|-------|-----|
| 調査年月   | R-4 | H-2 | H-     | 4 H   | -5   | S-1  | R-4  | H-2  | H-4  | H-5  | S-1  | R-4  | H-2   | H-4   | H-5   | S-1 |
| H24.8  | 5.0 | 6.9 | 8. 3   | 2 5   | . 7  | 10.2 | 2. 7 | 3.8  | 5. 7 | 3. 0 | 8.3  | 39.6 | 54. 6 | 75. 7 | 39. 7 | 112 |
| H25.1  | 5.0 | 7.4 | 12.    | 9 5   | . 6  | 12.3 | 2. 7 | 3.9  | 7.5  | 2.8  | 8. 1 | 45.7 | 60.4  | 130   | 43.4  | 112 |
|        |     | T-N | (mg/k  | (g)   |      |      | T-P  | (mg/ | kg)  |      |      |      |       |       |       |     |
| 調査年月   | R-4 | H-2 | H-4    | H-5   | S-1  | R-4  | H-2  | H-4  | H-5  | S-1  |      |      |       |       |       |     |
| H24.8  | 366 | 716 | 1000   | 523   | 1530 | 383  | 511  | 468  | 384  | 512  | 1    |      |       |       |       |     |
| H25. 1 | 359 | 669 | 1100   | 431   | 1330 | 370  | 437  | 510  | 318  | 517  |      |      |       |       |       |     |

|     |      |     |       |      |       |     |       | 米     | 位度組.  | 成(- | )     |       |       |     |       |      |      |
|-----|------|-----|-------|------|-------|-----|-------|-------|-------|-----|-------|-------|-------|-----|-------|------|------|
| 調査  | 年月   |     |       | R-4  |       |     |       | H-2   |       |     |       | H-4   |       |     |       | H-5  |      |
|     |      | 礫   | 砂     | シルト  | 粘土    | 礫   | 砂     | シルト   | 粘土    | 礫   | 砂     | シルト   | 粘土    | 礫   | 砂     | シルト  | 粘土   |
| H24 | 4.8  | 0.0 | 61. 3 | 22.4 | 16. 3 | 0.1 | 39. 2 | 40.6  | 20. 1 | 0.0 | 21.2  | 57. 5 | 21.3  | 0.0 | 57.8  | 21.2 | 21.0 |
| H25 | 5. 1 | 0.0 | 61. 5 | 21.5 | 17. 0 | 0.0 | 39. 6 | 38. 7 | 21.7  | 0.0 | 24. 4 | 50. 9 | 24. 7 | 0.2 | 63. 2 | 19.5 | 17.1 |

|   |       |     | 粒度組   | Ⅰ成(-) |       |       | 全硫化   | 匕物(m  | g/g)  |        |      | TO   | C (mg/ | ′g)  |       |
|---|-------|-----|-------|-------|-------|-------|-------|-------|-------|--------|------|------|--------|------|-------|
| п | 調査年月  |     | 5     | S-1   |       | R-4   | H_2   | H_4   | H_5   | S-1    | R-4  | H-2  | H-4    | H-5  | S-1   |
|   |       | 礫   | 砂     | シルト   | 粘土    | 1\ 4  | 11 2  | 11 4  | 11 3  | 3 1    | 1\ 4 | 11 2 | 11 4   | 11 3 | 3 1   |
| Г | H24.8 | 0.0 | 23.8  | 53. 3 | 22. 9 | 0.009 | 0.046 | 0.209 | 0.031 | 0. 144 | 3.3  | 7.4  | 8. 1   | 5.0  | 13. 9 |
| Г | H25.1 | 0.0 | 25. 1 | 49. 2 | 25. 7 | 0.008 | 0.067 | 0.098 | 0.010 | 0. 127 | 2. 7 | 5.8  | 9.2    | 3.0  | 12.9  |

# 環境監視項目6:今津干潟および周辺の生態系

#### ベントスの季節変化 (p. 20)

#### [R-4]

|    |       |         |               |            |             | 調査項目                       |        | 個体数(   | 個体/m²)  |        |         | 湿重量     | $(g/m^2)$ |         |
|----|-------|---------|---------------|------------|-------------|----------------------------|--------|--------|---------|--------|---------|---------|-----------|---------|
|    | 種 名   |         |               |            |             |                            | H24. 5 | H24. 8 | H24. 11 | H25. 1 | H24. 5  | H24. 8  | H24. 11   | H25. 1  |
| 1  | 紐形動物門 |         |               |            |             | NEMERTINEA                 | 5      |        |         |        | 0.11    |         |           |         |
| 2  | 軟体動物門 | マキカ・イ綱  | 中腹足目          | ウミニナ科      | ヘナタリガイ      | Cerithideopsilla cingulata | 80     | 165    | 139     |        | 128. 64 | 199. 20 | 154. 67   | 7       |
| 3  |       |         |               |            | ウミニナ        | Batillaria multiformis     | 11     |        |         |        | 15. 73  |         |           |         |
| 4  |       |         | 新腹足目          | ムシロカ、イ科    | アラムシロガイ     | Reticunassa festiva        |        | 5      | 11      |        |         | 2. 03   | 4. 32     | 2       |
| 5  |       |         | 頭楯目           | スイフガイ科     | コメツブツララガイ   | Didontoglossa decoratoides | 16     | 21     |         |        | 0.16    | 0. 21   |           |         |
| 6  |       | ニマイカ・イ綱 | マルスターレカーイ目    | ニッコウカ・イ科   | ユウシオガイ      | Moerella rutila            |        |        | 11      |        |         |         | 0.11      |         |
| 7  |       |         |               | マルスタ゛レカ゛イ科 | オキシジミガイ     | Cyclina sinensis           | 32     | 11     | 32      | 32     | 628. 32 | 212.00  | 382. 13   | 518.35  |
| 8  | 環形動物門 | コーカイ綱   | スt° オ目        | スピオ科       | ヤマトスピオ      | Prionospio japonica        |        |        | 21      | 112    |         |         | +         | 0.08    |
| 9  |       |         |               |            |             | Pseudopolydora sp.         | 5      |        |         | 75     | +       |         |           | 0.16    |
| 10 |       |         |               |            | アカテンスピオ     | Scolelepis variegata       |        |        | 85      |        |         |         | 0.05      | 5       |
| 11 |       |         |               |            |             | Scolelepis sp.             |        |        |         | 96     |         |         |           | 0.1     |
| 12 |       |         |               |            |             | Spiophanes sp.             | 181    |        |         |        | 0.85    |         |           |         |
| 13 |       |         |               | ミス゛ヒキコ゛カイ科 | ミズヒキゴカイ     | Cirriformia tentaculata    | 16     | 11     | 37      | 27     | 0. 59   | 0.75    | 0.05      | 0.1     |
| 14 |       |         | イトコーカイ目       | 小ゴカ/科      |             | Capitellidae               |        |        | 5       |        |         |         | +         |         |
| 15 |       |         |               |            |             | Capitella sp.              |        |        |         | 5      |         |         |           | +       |
| 16 |       |         |               |            |             | Heteromastus sp.           |        |        | 48      | 181    |         |         | 0.11      | 0.32    |
| 17 |       |         |               |            |             | Mediomastus sp.            | 11     |        |         |        | 0.11    |         |           |         |
| 18 |       |         | オフェリアコ゛カイ目    | オフェリアコ゛カイ科 | ツツオオフェリア    | Armandia lanceolata        | 11     |        |         |        | 0.05    |         |           |         |
| 19 |       |         | すシハ゛コ゛カイ目     | サシハ、コ、カイ科  | ホソミサシバ      | Eteone longa               | 16     |        |         |        | 0.05    |         |           |         |
| 20 |       |         |               |            |             | Eteone sp.                 |        |        |         | 16     |         |         |           | +       |
| 21 |       |         |               | カギゴカイ科     | クシカギゴカイ     | Sigambra phuketensis       | 11     |        |         | 5      | 0.05    |         |           | +       |
| 22 |       |         |               | コ*カイ科      | コケゴカイ       | Ceratonereis erythraeensis | 16     |        | 5       |        | 0. 21   |         | +         |         |
| 23 |       |         |               | チリ科        | チロリ         | Glycera chirori            | 16     | 5      |         |        | 1. 23   | 0.96    |           |         |
| 24 |       |         |               |            | マキントシチロリ    | Glycera macintoshi         | 11     |        | 11      | 11     | 0. 91   |         | 2. 40     | 1.17    |
| 25 |       |         |               |            |             | Glycera sp.                | 11     |        | 21      | 21     | 0.37    |         | 0. 21     | 0.2     |
| 26 |       |         |               | シロカ゛ネゴカイ科  | ミナミシロガネゴカイ  | Nephtys polybranchia       | 16     |        |         |        | 0.16    |         |           |         |
| 27 |       |         | イソメ目          | ギボシイソメ科    | コアシギボシイソメ   | Lumbrineris nipponica      |        |        | 5       | 21     |         |         | 0. 21     | 0.59    |
| 28 |       |         |               |            |             | Lumbrineris sp.            | 32     |        |         |        | 0. 21   |         |           |         |
| 29 |       |         |               |            | カタマガリギボシイソメ | Scoletoma longifolia       |        | 5      |         |        |         | 0. 27   |           |         |
| 30 |       |         | ケヤリムシ目        | クヤリムシ科     | ヒガタケヤリムシ    | Laonome albicingillum      | 27     | 11     |         |        | 0.11    | 0.05    |           |         |
| 31 |       | ミミス* 綱  | <b>イトミミズ目</b> | 小ミズ科       |             | Tubificidae                |        |        | 11      |        |         |         | +         |         |
| 32 | 節足動物門 | 甲殼綱     | アミ目           | アミ科        |             | Mysidae                    | 16     |        |         |        | 0.05    |         |           |         |
| 33 |       |         | クーマ目          | クーマ科       | クーマ属        | Diastylis sp.              | 155    |        | 16      |        | 0.11    |         | +         |         |
| 34 |       |         |               |            | サザナミクーマ属    | Dimorphostylis sp.         |        |        |         | 37     |         |         |           | 0.08    |
| 35 |       |         | ワラシ゛ムシ 目      | スナウミナナフシ科  | ムロミスナウミナナフシ | Cyathura muromiensis       | 27     | 304    | 171     | 59     | 0.16    | 0.64    | 0.43      | 0.2     |
| 36 |       |         | Boxt, 目       | ユンボ・ソコエヒ・科 | ニホンドロソコエビ   | Grandidierella japonica    |        |        |         | 5      |         |         |           | +       |
| 37 |       |         |               | イシクヨコエビ科   | クダオソコエビ     | Photis longicaudata        | 5      |        |         |        | +       |         |           |         |
| 38 |       |         | ɪt'目          | クルマエビ科     | クルマエビ       | Penaeus japonicus          |        |        | 5       |        |         |         | 0. 43     | 3       |
| 39 |       |         |               | テッポ ウエヒ 科  | テッポウエビ属     | Alpheus sp.                |        |        | 5       | 5      |         |         | 0.05      | 0.2     |
| 40 |       |         |               | スナモグリ科     | ニホンスナモグリ    | Callianassa japonica       | 5      |        |         |        | 0.05    |         |           |         |
| 41 |       |         |               |            | スナモグリ属      | Callianassa sp.            |        |        | 5       | 5      |         |         | +         | 0.0     |
| 42 |       |         |               | コブシカニ科     | マメコブシガニ     | Philyra pisum              |        | 11     |         | 11     |         | 0.96    |           | 0.96    |
| 43 |       |         |               | オサカ゛ニ科     | ヤマトオサガニ     | Macrophthalmus japonicus   | 5      | 11     | 16      | 11     | 0.37    | 0. 59   | 14. 13    | 2.99    |
| 44 |       |         |               |            | オサガニ属       | Macrophthalmus sp.         |        |        | 16      | 21     |         |         | 0.05      | 0.1     |
| a. |       | •       |               | •          | 種数          | •                          | 25     | 11     | 21      | 20     | 23      | 11      | 21        | 20      |
| 計  |       |         |               | 個体数        | または湿重量      |                            | 737    | 560    | 676     | 756    | 778.60  | 417.66  | 559.35    | 525. 65 |

注)空欄は出現しなかったことを、湿重量の+表示は 0.01g/m²未満を示す。

## ベントスの季節変化(p. 20) 【H-1】

|          | 種 名            |            |                         |                                        |                    | 調査項目 調査年月                                                       | H24 5  |         | 個体/m²)<br>H24.11 | H25. 1  | H24 5   | 湿重量<br>H24.8     | (g/m²)<br>H24.11 | H25 1   |
|----------|----------------|------------|-------------------------|----------------------------------------|--------------------|-----------------------------------------------------------------|--------|---------|------------------|---------|---------|------------------|------------------|---------|
| 1        | 種 名<br>刺胞動物門   | 花虫綱        | イソキャンチャク目               |                                        |                    | Actiniaria                                                      | HZ4. 5 | п24. 8  | H24. 11          | 11Z9. T | TIZ4. 5 | пΖ4. δ           | H24. 11<br>0. 11 | 1120.1  |
| 2        |                | th'o虫綱     |                         |                                        |                    | Hydrozoa                                                        |        |         |                  |         |         |                  |                  |         |
| 3        | 紐形動物門          |            |                         |                                        |                    | NEMERTINEA                                                      | 16     |         |                  |         | 0.16    |                  |                  |         |
| 5        |                | 無針綱        | 古紐虫目                    | +                                      |                    | Palaeonemertea                                                  |        | 16      |                  | 5       |         | 2. 08            |                  | +       |
| 6        | 軟体動物門          | マキカ゛イ綱     | 原始腹足目                   | ユキノカサカ* イ科                             | ヒメコザラガイ            | Heteronemertea Patelloida pygmaea                               |        | 16      |                  |         |         | 2.08             |                  |         |
| 7        | 2111 221111    | 100 1002   | 中腹足目                    | ミス゚コ゚マツポ科                              | エドガワミズゴマツボ         | Stenothyra edogawensis                                          |        |         | 59               |         |         |                  | 0. 16            |         |
| 8        |                |            |                         | ウミニナ科                                  | ヘナタリガイ             | Cerithideopsilla cingulata                                      | 11     | 16      | 5                |         | 24. 53  | 27. 20           | 0.05             |         |
| 9        |                |            | decide to to            | 15. 12.259                             |                    | Batillaria multiformis                                          | 5      |         |                  |         | 1.60    |                  |                  |         |
| 10       |                |            | 新腹足目                    | 4シロカ* イ科                               |                    | Niotha livescens<br>Reticunassa festiva                         |        | 5       | 11               |         |         | 2. 99            | 2. 61            |         |
| 12       |                |            | 頭楯目                     | スイフカ* イ科                               | コメツブツララガイ          | Didontoglossa decoratoides                                      | 11     | 3       | - 11             |         | 0. 11   | 2. 99            | 2. 01            |         |
| 13       |                |            |                         | ヘコミツララカ゛イ科                             |                    | Retusa matsusima                                                |        |         | 85               | 5       |         |                  | 0.16             | +       |
| 14       |                | ニマイカ・イ綱    | フネカ・イ目                  | 7初*1科                                  |                    | Scapharca subcrenata                                            |        |         |                  |         |         |                  |                  |         |
| 15       |                |            | /ガ/目                    | (力*(科                                  |                    | Musculus senhousia                                              |        |         |                  |         |         |                  |                  |         |
| 16<br>17 |                |            | ウク゛イスカ゛イ目<br>マルスタ゛レカ゛イ目 | // / / / / / / / / / / / / / / / / / / | マガキ<br>ウメノハナガイ     | Crassostrea gigas<br>Pillucina pisidium                         |        |         |                  |         |         |                  |                  |         |
| 18       |                |            | 7777 777 114            | ニッコウカ・イ科                               | イチョウシラトリガイ         | Merisca capsoides                                               | 11     | 32      | 11               | 11      | 28. 48  | 114. 83          | 58. 93           | 35. 41  |
| 19       |                |            |                         |                                        | モモノハナガイ            | Moerella jedoensis                                              | 69     |         |                  |         | 5. 49   |                  |                  |         |
| 20       |                |            |                         |                                        | テリザクラガイ            | Moerella iridescens                                             |        | 85      | 85               | 112     |         | 10. 24           | 7. 79            | 4.59    |
| 21       |                |            | +                       |                                        | ゴイサギガイ<br>ヒメシラトリガイ | Macoma tokyoensis                                               |        |         |                  |         |         |                  |                  |         |
| 23       |                |            | +                       | アサジガイ科                                 |                    | Macoma incongrua<br>Theora fragilis                             |        |         |                  |         |         |                  |                  |         |
| 24       |                |            | +                       | 7ナカ゚タカ゚イ科                              | ウネナシトマヤガイ          | Trapezium liratum                                               |        |         |                  |         |         |                  |                  |         |
| 25       |                |            |                         | マルスダレガイ科                               | ヒメカノコアサリ           | Veremolpa micra                                                 |        |         |                  |         |         |                  |                  |         |
| 26       |                |            |                         |                                        | アサリ                | Ruditapes philippinarum                                         |        |         |                  |         |         |                  |                  |         |
| 27       |                |            | +                       | +                                      | イヨスダレガイ            | Paphia undulata                                                 | 0.0    | 00      | 0.0              | 10      | 696 77  | 974.07           | 200 01           | 940.00  |
| 28<br>29 | 環形動物門          | コ゛カイ綱      | ホコサキコ゛カイ目               | おコサキコ゛カイ科                              | オキシジミガイ<br>ナガホコムシ  | Cyclina sinensis Haploscoloplos elongatus                       | 32     | 32<br>5 | 32               | 16      | 636. 75 | 274. 67<br>0. 05 | 399. 84          | 248. 37 |
| 30       | 28712 WW TST 1 | /* 1 m2**3 | 11.715 MIH              |                                        | , ,                | Haploscoloplos sp.                                              |        |         | 11               | 5       |         | 0.00             | 0.05             | 0.11    |
| 31       |                |            |                         |                                        | ヤツデホコムシ            | Phylo fimbriatus                                                |        |         |                  |         |         |                  |                  |         |
| 32       |                |            | とトエラコ゛カイ目               | とトエラコ、カイ科                              |                    | Cossura sp.                                                     |        |         |                  | 27      |         |                  |                  | +       |
| 33       |                |            | スt゚オ目                   | Zt" 材料                                 |                    | Prionospio depauperata                                          |        |         |                  | 43      | -       |                  | -                | 0.11    |
| 34<br>35 |                |            | +                       | +                                      | ヤマトスピオ             | Prionospio japonica Prionospio spp.                             | 21     | 5       | 5                | 5       | 0.11    | +                | +                | +       |
| 36       |                |            | +                       | +                                      |                    | Pseudopolydora sp.                                              | 21     | 3       | 3                | 16      | 0.11    | -                | - T              | +       |
| 37       |                |            |                         |                                        |                    | Scolelepis sp.                                                  |        |         |                  | 53      |         |                  |                  | 0.05    |
| 38       |                |            |                         |                                        |                    | Spiophanes sp.                                                  | 165    |         |                  |         | 0.48    |                  |                  |         |
| 39       |                |            |                         | モロテコ゛カイ科                               | モロテゴカイ             | Magelona japonica                                               |        |         |                  |         |         |                  |                  |         |
| 40       |                |            | +                       | ミス* ヒキコ* カイ科                           |                    | Magelona sp.                                                    |        |         |                  | 5       |         |                  |                  | +       |
| 42       |                |            | +                       | へへ してっ カイキャ                            | ミズヒキゴカイ            | Cirratulidae Cirriformia tentaculata                            |        |         |                  |         |         |                  |                  |         |
| 43       |                |            |                         |                                        |                    | Tharyx sp.                                                      |        |         |                  | 5       |         |                  |                  | +       |
| 44       |                |            | イトコ゛カイ目                 | 小"加科                                   |                    | Capitellidae                                                    |        |         |                  |         |         |                  |                  |         |
| 45       |                |            |                         |                                        |                    | Heteromastus sp.                                                | 107    | 11      | 85               | 731     | 0.37    | 0.16             | 0.11             | 1.39    |
| 46<br>47 |                |            | -                       | +                                      |                    | Mediomastus sp.                                                 |        | 11      |                  |         |         | 0.05             |                  |         |
| 48       |                |            | +                       | タケフシコ゛カイ科                              |                    | Notomastus sp. Maldanidae                                       |        |         |                  |         |         |                  |                  |         |
| 49       |                |            | オフェリアコ゛カイ目              | オフェリアコ゛カイ科                             |                    | Armandia lanceolata                                             | 27     | 5       |                  | 11      | 0.05    | +                |                  | +       |
| 50       |                |            | サシハ゛コ゛カイ目               | サシバゴカイ科                                |                    | Phyllodocidae                                                   |        |         |                  |         |         |                  |                  |         |
| 51       |                |            |                         | 1                                      |                    | Eteone longa                                                    |        |         |                  |         |         |                  |                  |         |
| 52<br>53 |                |            |                         | ウロコムシ科                                 |                    | Eteone sp.                                                      |        |         |                  | 27      |         |                  |                  | 0.05    |
| 54       |                |            | +                       | オトヒメコ・カイ科                              | フリノイリロコムン里科        | Lepidonotus sp.  Micropodarke sp.                               | 5      |         |                  |         | +       |                  |                  |         |
| 55       |                |            | +                       | 1                                      |                    | Ophiodromus sp.                                                 |        |         |                  | 5       |         |                  |                  | +       |
| 56       |                |            |                         | カキ゛コ゛カイ科                               | ニホンカギゴカイ           | Cabira pilargiformis japonica                                   |        |         | 5                | 5       |         |                  | +                | +       |
| 57       |                |            |                         | 1,100                                  | クシカギゴカイ            | Sigambra phuketensis                                            | 27     |         |                  | 27      | 0.11    |                  |                  | 0.05    |
| 58<br>59 |                |            | +                       | コ*カイ科                                  | コケゴカイ              | Nereiridae                                                      |        |         |                  |         |         |                  |                  |         |
| 60       |                |            | +                       | +                                      | スナイソゴカイ            | Ceratonereis erythraeensis<br>Perinereis nuntia var.brevicirris |        |         |                  |         |         |                  |                  |         |
| 61       |                |            |                         | チロリ科                                   | チロリ                | Glycera chirori                                                 | 5      | 16      |                  |         | 0.05    | 0. 96            |                  |         |
| 62       |                |            |                         |                                        | マキントシチロリ           | Glycera macintoshi                                              | 11     |         | 16               | 11      | 2. 24   |                  | 1. 60            |         |
| 63       |                |            |                         | -4 15-1154                             |                    | Glycera sp.                                                     |        |         | 37               | 16      |         |                  | 0.11             | 0.11    |
| 64<br>65 |                |            | +                       | ニカイチロリ科シロカ゛ネコ゛カイ科                      |                    | Goniada japonica<br>Nephtys polybranchia                        | 171    |         | 11               |         | 0. 53   |                  | 0.05             |         |
| 66       |                |            |                         | A C A 17T                              |                    | Nephtys sp.                                                     | -111   |         |                  | 64      | V. 00   |                  | 5.00             | 0.11    |
| 67       |                |            | イソメ目                    | イソメ科                                   | ホソナガエラムシ           | Marphysa depressa                                               |        |         |                  |         |         |                  |                  |         |
| 68       |                |            |                         | 1010                                   |                    | Marphysa sp.                                                    |        |         |                  |         |         |                  |                  |         |
| 69<br>70 |                | -          | +                       | ギボシイソメ科                                | コアシギボシイソメ          | Lumbrineris nipponica                                           | 27     |         |                  | 27      | 0.11    |                  |                  | 0. 27   |
| 70       |                |            | +                       | +                                      | カタマガリギボシイソメ        | Lumbrineris sp.<br>Scoletoma longifolia                         | 27     | 11      |                  |         | 0.11    | 0. 11            |                  |         |
| 72       |                |            | ダールマコーカイ目               | タ゛ルマコ゛カイ科                              |                    | Sternaspis scutata                                              | - 21   | - 11    |                  |         | 0.02    | 0.11             |                  |         |
| 73       |                |            |                         | ハボウキゴカイ科                               |                    | Brada sp.                                                       |        |         |                  |         |         |                  |                  |         |
| 74       |                |            | フサゴカイ目                  | ウミイサゴムシ科                               | ウミイサゴムシ            | Lagis bocki                                                     |        | 5       |                  |         |         |                  |                  |         |
| 75<br>76 |                |            | Adell 12. P             | フサコ カイ科<br>ケヤリムシ科                      | ヒガタケヤリムシ           | Polycirrinae                                                    | 5      |         |                  | 5       | +       | -                |                  | 0.11    |
| 76       |                |            | ケヤリムシ目                  | カンサーシューカイ科                             |                    | Laonome albicingillum<br>Hydroides ezoensis                     | 5      |         |                  |         |         |                  |                  |         |
| 78       |                |            | 1                       | 7.7.7.7.111                            |                    | Pomatoleios kraussii                                            |        |         |                  |         |         |                  |                  |         |
| 79       | 節足動物門          | 甲殼綱        | シオドコーパ目                 | ウミホタル科                                 | ウミボタル              | Vargula hilgendorfii                                            |        |         |                  |         |         | 0.11             |                  |         |
| 80       |                |            | フシ゛ツボ目                  | フジツボ科                                  |                    | Balanus albicostatus                                            |        |         |                  |         |         |                  |                  |         |
| 81<br>82 |                |            | アミ目                     | 7:科                                    |                    | Balanus eburneus<br>Mysidae                                     | 11     |         |                  |         | +       |                  |                  |         |
| 83       |                |            | ケーマ目                    | ノミルト<br>ナキ*サクーマ科                       | ヴォントンプソンクーマ属       |                                                                 | 11     |         |                  | 16      | L .     |                  |                  | +       |
| 84       |                |            |                         | クーマ科                                   |                    | Diastylis sp.                                                   | 43     |         |                  | 13      | +       |                  |                  |         |
| 85       |                |            |                         |                                        | サザナミクーマ属           | Dimorphostylis sp.                                              |        |         |                  | 21      |         |                  |                  | 0.05    |
| 86       |                |            | ワラシ゛ムシ目                 | スナウミナナフシ科                              | ムロミスナウミナナフシ        | Cyathura muromiensis                                            |        |         |                  |         |         |                  |                  |         |
| 87<br>88 |                |            | 2776, H                 | コツブ ムシ科 ユンボ ソコエヒ 科                     |                    | Gnorimosphaeroma sp.                                            |        |         |                  | 5       |         | -                |                  |         |
|          |                |            | 33It"                   | ユンボ ソコエヒ 科<br>ト*ロクタ*ムシ科                |                    | Grandidierella japonica<br>Corophiidae                          |        |         |                  | b       |         |                  |                  | +       |
|          |                |            | +                       | イシクヨコエヒ、科                              | クダオソコエビ            | Photis longicaudata                                             |        |         |                  |         |         |                  |                  |         |
| 90<br>90 |                |            |                         |                                        |                    |                                                                 |        |         |                  |         |         |                  |                  | -       |
| 90<br>91 |                |            | It' 🗏                   | テッポ ウエヒ 科                              | テッポウエビ             | Alpheus brevicristatus                                          |        |         | 16               |         |         |                  | 0.75             |         |
| 90       |                |            | It'                     | テッポ ウエヒ*科<br>ハサミシャコエヒ*科                | テッポウエビ属            | Alpheus brevicristatus<br>Alpheus sp.<br>Laomedia astacina      |        | 5       | 16<br>5          | 5       |         | 0. 32            | 0. 75            | 0.11    |

|     |       |         |          |             |               | 調査項目                     |        | 個体数(   | 個体/m²)  |        |        | 湿重量    | $(g/m^2)$ |         |
|-----|-------|---------|----------|-------------|---------------|--------------------------|--------|--------|---------|--------|--------|--------|-----------|---------|
|     | 種 名   |         |          |             |               | 調査年月                     | H24. 5 | H24. 8 | H24. 11 | H25. 1 | H24. 5 | H24. 8 | H24. 11   | H25. 1  |
| 94  |       |         |          | スナモグリ科      | ニホンスナモグリ      | Callianassa japonica     |        |        |         |        |        |        |           |         |
| 95  |       |         |          | コプシカ゚ニ科     | ヘリトリコブシ       | Philyra heterograna      |        |        |         |        |        |        |           |         |
| 96  |       |         |          | ワタリカ゛ニ科     | イシガニ          | Charybdis japonica       |        |        |         |        |        |        |           |         |
| 97  |       |         |          | ムツハアリアケカ゛ニ科 | ムツハアリアケガニ     | Camptandrium sexdentatum |        | 5      |         | 5      |        | 0.16   |           | 0.37    |
| 98  |       |         |          | オサガニ科       | ヤマトオサガニ       | Macrophthalmus japonicus | 16     | 32     | 5       | 11     | 5. 55  | 21.76  | 2. 99     | 1.65    |
| 99  |       |         |          | モクス゛カ゛ニ科    | タカノケフサイソガニ    | Hemigrapsus takanoi      |        |        |         |        |        |        |           |         |
| 100 | 棘皮動物門 | thデ綱    | モミシ゛カ゛イ目 | モミシ゛カ゛イ科    | モミジガイ         | Astropecten scoparius    |        |        |         |        |        |        |           |         |
| 101 |       | クモヒトテ゛綱 | クモヒトテ゛目  | スナクモヒトテ*科   | メガネクモヒトデ      | Amphiura aestuarii       |        |        |         |        |        |        |           |         |
| 102 | 脊椎動物門 | 硬骨魚綱    | スズギ目     | /世*科        |               | Gobiidae                 |        | 5      |         |        |        | 0.11   |           |         |
| 31  | •     |         | •        |             | 種数            |                          | 22     | 18     | 18      | 30     | 22     | 18     | 18        | 30      |
| рІ  |       |         |          | 個体数         | <b>または湿重量</b> |                          | 823    | 302    | 489     | 1,300  | 707.04 | 455.80 | 475.47    | 293. 92 |

注)空欄は出現しなかったことを、湿重量の+表示は0.01g/m²未満を示す。

## ベントスの季節変化 (p. 20) 【H-2】

|                                  |                  |              |                                              |                                |                              | 調査項目調査項目                                                  |          |             | 個体/m²)  |          |          | 湿重量      | $(g/m^2)$  |        |
|----------------------------------|------------------|--------------|----------------------------------------------|--------------------------------|------------------------------|-----------------------------------------------------------|----------|-------------|---------|----------|----------|----------|------------|--------|
| 1                                | 種 名<br>刺胞動物門     | ヒドロ虫綱        |                                              |                                |                              | Hydrozoa                                                  | H24. 5   | H24. 8<br>+ | H24. 11 | H25. 1   | H24. 5   | H24. 8   | H24. 11    | H25. 1 |
| 2                                | 紐形動物門            | CL FEXAM     |                                              |                                |                              | NEMERTINEA                                                | <u> </u> |             |         |          | <u> </u> | <u> </u> |            |        |
| 3                                |                  | 無針綱          | 古紐虫目                                         |                                |                              | Palaeonemertea                                            |          |             | 16      | 5        |          |          | 0.05       | +      |
| 4                                | Advancian as pro | Ada 1 Arm    | 異紐虫目                                         |                                |                              | Heteronemertea                                            |          |             | _       | 5        |          |          |            | 0.05   |
| 5<br>6                           | 線形動物門<br>軟体動物門   | 線虫綱<br>マキガイ綱 | 原始腹足目                                        | ユキノカサカ* イ科                     | ヒメコザラガイ                      | Nematoda Patelloida pygmaea                               |          |             | 5       |          |          |          | +          |        |
| 7                                | 4×14×100.1×01.1  | *17/ 17/19   | 中腹足目                                         | ウミニナ科                          | ヘナタリガイ                       | Cerithideopsilla cingulata                                |          |             |         |          |          |          |            |        |
| 8                                |                  |              |                                              |                                | ウミニナ                         | Batillaria multiformis                                    |          |             |         |          |          |          |            |        |
| 9                                |                  |              | 新腹足目                                         | ムシロカ・イ科                        | ムシロガイ                        | Niotha livescens                                          | 5        | 5           |         |          | 1. 23    | 2. 45    |            |        |
| 10<br>11                         |                  |              | 頭楯目                                          | スイフカ* イ科                       | アラムシロガイ<br>コメツブツララガイ         | Reticunassa festiva<br>Didontoglossa decoratoides         | 11       |             |         |          | 4. 16    |          |            |        |
| 12                               |                  |              | 2只7月 口                                       | キセワタカ・イ科                       | ヨコヤマキセワタガイ                   | Yokoyamaia ornatissima                                    |          |             |         | 5        |          |          |            | +      |
| 13                               |                  |              |                                              | ブドウガイ科                         | プドウガイ                        | Haloa japonica                                            |          |             |         | 5        |          |          |            | +      |
| 14                               |                  | ニマイカ・イ綱      | 7対・7目                                        | 7初* 1科                         | サルボウガイ                       | Scapharca subcrenata                                      |          |             |         |          |          |          |            |        |
| 15<br>16                         |                  |              | f カ * イ目<br>ウ ク * イスカ * イ目                   | /ガ/科<br>/タボガキ科                 | ホトトギスガイ<br>マガキ               | Musculus senhousia                                        | 5        |             |         |          | 305. 97  |          |            |        |
| 17                               |                  |              | マルスダンカブイ目                                    | ツキカ・イ科                         | ウメノハナガイ                      | Crassostrea gigas Pillucina pisidium                      | 3        | 128         |         |          | 305. 91  | 11. 31   |            |        |
| 18                               |                  |              |                                              | ニッコウカ゛イ科                       | イチョウシラトリガイ                   | Merisca capsoides                                         |          |             |         |          |          |          |            |        |
| 19                               |                  |              |                                              |                                | モモノハナガイ                      | Moerella jedoensis                                        |          |             |         |          |          |          |            |        |
| 20                               |                  |              |                                              |                                | テリザクラガイ<br>ゴイサギガイ            | Moerella iridescens                                       | 11       |             |         |          | 6. 35    |          |            |        |
| 22                               |                  |              |                                              |                                | ヒメシラトリガイ                     | Macoma tokyoensis<br>Macoma incongrua                     | 5        |             | 5       | 5        | 0. 27    |          | 0.80       | 0.91   |
| 23                               |                  |              |                                              | アサシ゛カ゛イ科                       | シズクガイ                        | Theora fragilis                                           |          |             |         |          |          |          |            |        |
| 24                               |                  |              |                                              | フナカ・タカ・イ科                      | ウネナシトマヤガイ                    | Trapezium liratum                                         |          |             |         |          |          |          |            |        |
| 25                               |                  |              |                                              | マルスタ゛レカ゛イ科                     | ヒメカノコアサリ                     | Veremolpa micra                                           |          |             |         |          |          |          |            |        |
| 26<br>27                         |                  | -            |                                              | 1                              | アサリ<br>イヨスダレガイ               | Ruditapes philippinarum                                   | +        | -           |         | -        | -        | -        |            |        |
| 28                               |                  |              |                                              | +                              | オキシジミガイ                      | Paphia undulata Cyclina sinensis                          | _        |             |         |          |          |          |            |        |
| 29                               | 環形動物門            | コ*カイ綱        | ホコサキコ゛カイ目                                    | おコサキゴカイ科                       | ナガホコムシ                       | Haploscoloplos elongatus                                  | L        | 27          |         |          |          | 0. 11    |            |        |
| 30                               |                  |              |                                              |                                |                              | Haploscoloplos sp.                                        |          |             | 32      | 27       |          |          | 0.05       | 0.11   |
| 31                               |                  | -            | .1                                           | 1.1                            | ヤツデホコムシ                      | Phylo fimbriatus                                          | 1        |             |         |          |          |          |            |        |
| 32                               |                  |              | ヒトエラコ <sup>*</sup> カイ目<br>スヒ <sup>*</sup> オ目 | t h z j z * カ / 科<br>ス t * オ 科 |                              | Cossura sp. Polydora sp.                                  | -        |             | 5       |          |          | -        | +          |        |
| 34                               |                  | <u> </u>     | 70 4 1                                       | A ATT                          | ソデナガスピオ                      | Prionospio depauperata                                    | +        |             | 9       | 32       |          |          | <u> </u>   | 0.05   |
| 35                               |                  |              |                                              |                                |                              | Prionospio spp.                                           |          | 5           | 5       |          |          | +        | +          |        |
| 36                               |                  |              |                                              |                                |                              | Pseudopolydora sp.                                        |          |             |         | 11       |          |          |            | +      |
| 37                               |                  |              |                                              |                                |                              | Scolelepis sp.                                            |          |             |         |          |          |          |            |        |
| 38                               |                  |              |                                              | モロテコ゛カイ科                       | モロテゴカイ                       | Spiophanes sp.  Magelona japonica                         |          |             |         |          |          |          |            |        |
| 40                               |                  |              |                                              | ミス゛ヒキゴカイ科                      | C - / - // - /               | Cirratulidae                                              |          | 5           |         |          |          | 0.11     |            |        |
| 41                               |                  |              |                                              |                                | ミズヒキゴカイ                      | Cirriformia tentaculata                                   |          |             |         |          |          |          |            |        |
| 42                               |                  |              |                                              |                                |                              | Tharyx sp.                                                |          |             | 96      | 53       |          |          | 0.05       | 0.05   |
| 43                               |                  |              | イトコ゛カイ目                                      | イトゴカイ科                         |                              | Capitellidae                                              |          |             |         | -        |          |          |            | 0.05   |
| 44                               |                  |              |                                              |                                |                              | Dasybranchus sp. Heteromastus sp.                         | 11       | 16          | 112     | 5<br>213 | 0.05     | 0.11     | 0. 11      | 0.27   |
| 46                               |                  |              |                                              |                                |                              | Mediomastus sp.                                           | - 11     | 10          | 112     | 210      | 0.00     | 0.11     | 0.11       | 0.02   |
| 47                               |                  |              |                                              |                                |                              | Notomastus sp.                                            |          |             |         |          |          |          |            |        |
| 48                               |                  |              |                                              | タケフシコ゛カイ科                      |                              | Maldanidae                                                | 5        |             |         |          | 0.11     |          |            |        |
| 49<br>50                         |                  |              | オフェリアコ゛カイ目                                   | オフェリアコ゛カイ科<br>サシハ゛コ゛カイ科        | ツツオオフェリア                     | Armandia lanceolata                                       | 16       |             | 5       |          | 0.05     |          | 0.05       |        |
| 51                               |                  |              | 72/1 2 //1 日                                 | サンハ コ ルイ本年                     | ホソミサシバ                       | Phyllodocidae<br>Eteone longa                             |          |             |         |          |          |          |            |        |
| 52                               |                  |              |                                              | ウロコムシ科                         | フサツキウロコムシ亜科                  | Lepidonotus sp.                                           | 5        |             |         |          | 0.37     |          |            |        |
| 53                               |                  |              |                                              | オトヒメコ゛カイ科                      |                              | Micropodarke sp.                                          |          |             |         |          |          |          |            |        |
| 54<br>55                         |                  |              |                                              | 力卡"コ"カイ科                       | クシカギゴカイ                      | Gyptis sp.                                                |          | 5           | 5<br>59 | 11       |          | +        | +<br>0. 05 | +      |
| 56                               |                  |              |                                              | 2 カイ科                          | クンルギュルイ                      | Sigambra phuketensis Nereiridae                           | 5        | 3           | 59      | 11       | +        | -        | 0.05       |        |
| 57                               |                  |              |                                              | 7 (3)                          | コケゴカイ                        | Ceratonereis erythraeensis                                |          |             |         | 16       |          |          |            | 0.16   |
| 58                               |                  |              |                                              |                                | スナイソゴカイ                      | Perinereis nuntia var.brevicirris                         |          |             |         |          |          |          |            |        |
| 59                               |                  |              |                                              | チロリ科                           | チロリ                          | Glycera chirori                                           | 5        | 16          | _       | 16       | 1. 33    | 0.85     |            | 1.81   |
| 60                               |                  |              |                                              |                                | マキントシチロリ                     | Glycera macintoshi Glycera sp.                            |          |             | 5       |          |          |          | 0. 43      |        |
| 62                               |                  | <u> </u>     |                                              | =カイチロリ科                        | ヤマトキョウスチロリ                   | Giycera sp.  Goniada japonica                             | 5        | 5           |         | 11       | 0. 37    | 0.05     |            | 0.64   |
| 63                               |                  |              |                                              | シロカ゛ネゴカイ科                      | コノハシロガネゴカイ                   | Nephtys oligobranchia                                     |          |             |         | 5        |          |          |            | +      |
| 64                               |                  | L            |                                              |                                | ミナミシロガネゴカイ                   | Nephtys polybranchia                                      |          |             |         |          |          |          |            |        |
| 65<br>66                         |                  | -            | イソメ目                                         | イソメ科                           | ホソナガエラムシ                     | Nephtys sp.                                               | 5        |             |         | 32       | 0. 16    |          |            | 0.05   |
| 67                               |                  | <u> </u>     | 177.0                                        | 177TT                          |                              | Marphysa depressa<br>Marphysa sp.                         | 5        |             |         |          | +        |          |            |        |
| 68                               |                  |              |                                              | <b>ギボシイソメ科</b>                 |                              | Lumbrineris sp.                                           | L        |             | L       |          |          |          |            |        |
| 69                               |                  |              |                                              |                                | カタマガリギボシイソメ                  | Scoletoma longifolia                                      | 16       | 21          | 16      | 37       | 0. 21    | 0.37     | +          | 0.05   |
| 70                               |                  | -            | ダールマコーカイ目                                    | タ*ルマコ*カイ科                      | ダルマゴカイ                       | Sternaspis scutata                                        | 11       |             |         |          | 0. 48    |          |            |        |
| 71                               |                  | -            | フサコ゛カイ目                                      | ハボ ウキコ カイ科<br>ウミイサコ ムシ科        | -                            | Brada sp. Pectinaria sp.                                  | +        |             | 5       |          |          | -        | 0.05       |        |
| 73                               |                  |              | 7.75 WID                                     | フサコ カイ科                        | チンチロフサゴカイ                    | Loimia medusa                                             |          |             | 5       |          |          |          | 4. 91      |        |
| 74                               |                  |              | ケヤリムシ目                                       | ケヤリムシ科                         | ヒガタケヤリムシ                     | Laonome albicingillum                                     | 5        |             |         |          | +        |          |            |        |
| 75                               |                  |              |                                              | カンザ・シコ゛カイ科                     | エゾカサネカンザシ                    | Hydroides ezoensis                                        | 32       |             |         |          | 0.11     |          |            |        |
| 76                               | 然日長長四            | FH ±0.600    | -15/2 WTS ID                                 | -12,* 01-10* ±14               | ヤッコカンザシ                      | Pomatoleios kraussii                                      | 5        |             |         |          | +        |          |            |        |
| 77<br>78                         | 節足動物門            | 甲殼綱          | フシ゛ツオ゛目                                      | 7ジツボ科                          | シロスジフジツボ<br>アメリカフジツボ         | Balanus albicostatus Balanus eburneus                     | 16       |             |         |          | 13. 87   | _        |            |        |
| 79                               |                  |              | 7ミ目                                          | 7:科                            |                              | Mysidae                                                   | 13       |             |         |          | 13.01    |          |            |        |
| 80                               |                  |              | ケーマ目                                         | ナンノクーマ科                        |                              | Nannastacidae                                             |          |             |         | 5        |          |          |            | +      |
| 81                               |                  |              |                                              | クーマ科                           | クーマ属                         | Diastylis sp.                                             |          |             |         |          |          |          |            |        |
| 82                               |                  | -            | タナイス目                                        | タナイス科                          | キスイタナイス                      | Sinelobus sp.( cf.stanfordi)                              | -        |             | -       | 5        | <b></b>  |          |            | +      |
| 83                               |                  | <u> </u>     | ワラシ゛ムシ目                                      | スナウミナナフシ科コツフ゛ムシ科               | ムロミスナウミナナフシ<br>イソコツブムシ属      | Cyathura muromiensis<br>Gnorimosphaeroma sp.              | +        |             |         |          |          |          |            |        |
|                                  |                  |              | 32It* 目                                      | ユンボ ソコエヒ 科                     | ニホンドロソコエビ                    | Grandidierella japonica                                   |          |             |         | 53       |          |          |            | 0.11   |
| 84<br>85                         |                  |              |                                              | ドロクダムシ科                        |                              | Corophiidae                                               | 16       |             |         |          | +        |          |            |        |
| 84<br>85<br>86                   |                  |              |                                              |                                |                              | C                                                         | 1        |             |         | 1.1      |          |          |            | +      |
| 84<br>85<br>86<br>87             |                  |              |                                              |                                | ドロクダムシ属                      | Corophium sp.                                             |          |             |         | 11       | -        |          |            |        |
| 84<br>85<br>86<br>87<br>88       |                  |              | 7 b , E                                      | イシクヨコエヒ <sup>*</sup> 科         | クダオソコエビ                      | Photis longicaudata                                       |          |             |         |          |          |          |            |        |
| 84<br>85<br>86<br>87<br>88<br>89 |                  |              | zt*目                                         | クルマエビ科                         | クダオソコエビ<br>ヨシエビ              | Photis longicaudata<br>Metapenaeus ensis                  |          |             | 5       | 5        |          |          | +          | 0.43   |
| 84<br>85<br>86<br>87<br>88       |                  |              | It'                                          |                                | クダオソコエビ                      | Photis longicaudata                                       |          |             | 5 11    |          |          |          | + 0.11     |        |
| 84<br>85<br>86<br>87<br>88<br>89 |                  |              | エt <sup>*</sup> 目                            | クルマエビ科                         | クダオソコエビ<br>ヨシエビ<br>セジロムラサキエビ | Photis longicaudata  Metapenaeus ensis  Athanas japonicus |          |             |         | 5        |          |          | _          | 0.43   |

|     |       |        |          |          |             | 調査項目                     |        | 個体数(   | 個体/m²)  |        |        | 湿重量    | $(g/m^2)$ |        |
|-----|-------|--------|----------|----------|-------------|--------------------------|--------|--------|---------|--------|--------|--------|-----------|--------|
|     | 種 名   |        |          |          |             |                          | H24. 5 | H24. 8 | H24. 11 | H25. 1 | H24. 5 | H24. 8 | H24. 11   | H25. 1 |
| 94  |       |        |          | コブシカニ科   | ヘリトリコブシ     | Philyra heterograna      |        |        |         |        |        |        |           |        |
| 95  |       |        |          |          | マメコブシガニ     | Philyra pisum            |        | 5      |         |        |        | 1.81   |           |        |
| 96  |       |        |          | ワタリカ゛ニ科  | イシガニ        | Charybdis japonica       |        |        |         |        |        |        |           |        |
| 97  |       |        |          | オサカ゛ニ科   | ヤマトオサガニ     | Macrophthalmus japonicus |        |        |         |        |        |        |           |        |
| 98  |       |        |          | モクス゛カ゛ニ科 | タカノケフサイソガニ  | Hemigrapsus takanoi      |        |        |         |        |        |        |           |        |
| 99  |       |        |          |          | トリウミアカイソモドキ | Acmaeopleura toriumii    |        |        | 16      |        |        |        | 0.91      |        |
| 100 |       |        |          |          | イソガニ属       | Hemigrapsus sp.          |        |        |         | 11     |        |        |           | 0.05   |
| 101 | 触手動物門 | 箒虫綱    | 箒虫目      | ホウキムシ科   |             | Phoronis sp.             |        |        | 21      | 27     |        |        | 0.05      | +      |
| 102 | 棘皮動物門 | tトデ綱   | モミシ゛カ゛イ目 | モミシ゛カ゛イ科 | モミジガイ       | Astropecten scoparius    |        |        |         |        |        |        |           |        |
| 103 |       | クモヒトデ綱 | クモヒトデ目   | スナクモヒトデ科 | メガネクモヒトデ    | Amphiura aestuarii       |        |        |         |        |        |        |           |        |
| 104 | 脊椎動物門 | 硬骨魚綱   | 77* 目    | 77*科     | クサフグ        | Takifugu niphobles       |        | 5      |         |        |        | 13. 28 |           |        |
| 31  | •     |        |          |          | 種数          | •                        | 22     | 13     | 19      | 27     | 22     | 13     | 19        | 27     |
| рΙ  |       |        |          | 個体数      | または湿重量      |                          | 200    | 243    | 429     | 653    | 335.09 | 30.45  | 7.62      | 5. 81  |

注)空欄は出現しなかったことを、湿重量の+表示は 0.01g/m²未満を示す。

## ベントスの季節変化 (p. 20) 【H-3】

| 1 刺脂<br>2 扁开<br>3 紐开<br>4<br>5                                                                                                          | 图 名                  | と下。虫綱<br>漁虫綱<br>無針綱<br>終虫綱<br>マキカ・イ綱 | 多岐陽日 古紐虫目 異紐虫目 原始腹足目 ・ 新腹足目 ・ 新腹足目 ・ のが、イ目 ・ のが、イ目 ・ のが、イ目 ・ のが、イ目 ・ のが、イ目 | ユキノカサカ" イ科<br>ウミニナ科<br>ムシロカ" イ科<br>スイフカ" イ科<br>フネカ" イ科 | ヒメコザラガイ<br>ヘナタリガイ<br>ウミニナ<br>ムシロガイ<br>アラムシロガイ | Hydrozoa Polyclada NEMERTINEA Palaeonemertea Heteronemertea Nematoda Patelloida pygmaea Cerithideopsilla cingulata | H24. 5   | H24. 8 | 16       | H25. 1 5 11 5 | H24. 5         | H24. 8  | 0. 05          | H25. 1   |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------|--------|----------|---------------|----------------|---------|----------------|----------|
| 2 編3 級刊<br>5 6 級刊<br>7 軟付<br>9 10<br>11 12<br>13 3<br>14 15<br>16 6<br>17 18 19<br>20 21<br>21 22 22 23 24 25 26 27 8                   | 形動物門<br>形動物門<br>形動物門 | 渦虫綱<br>無針綱<br>線虫綱<br>マネガイ綱           | 古紐虫目<br>異紐虫目<br>原始腹足目<br>中腹足目<br>新腹足目<br>類構目<br>7初11目<br>(か11)             | ウミナ科 ムシロカ・イ科 スイフカ・イ科                                   | ヘナタリガイ<br>ウミニナ<br>ムシロガイ                       | Polyclada NEMERTINEA Palaeonemettea Heteronemertea Nematoda Patelloida pygmaea Cerithideopsilla cingulata          | 122      |        |          | 11            |                |         | 0.05           | +        |
| 3 組刊<br>4 4 4 4 7 4 4 7 4 7 4 7 7 4 4 7 7 7 7 7                                                                                         | 形動物門形動物門             | 無針綱線虫綱マキガイ綱                          | 古紐虫目<br>異紐虫目<br>原始腹足目<br>中腹足目<br>新腹足目<br>類構目<br>7初11目<br>(か11)             | ウミナ科 ムシロカ・イ科 スイフカ・イ科                                   | ヘナタリガイ<br>ウミニナ<br>ムシロガイ                       | NEMERTINEA Palaeonemertea Heteronemertea Nematoda Patelloida pygmaea Cerithideopsilla cingulata                    | 122      |        |          | 11            |                |         | 0.05           | +        |
| 5<br>6 線升<br>7 軟体<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27 |                      | 線虫綱マキガイ綱                             | 異細虫目<br>原始腹足目<br>中腹足目<br>新腹足目<br>頸楯目<br>7ネガイ目                              | ウミナ科 ムシロカ・イ科 スイフカ・イ科                                   | ヘナタリガイ<br>ウミニナ<br>ムシロガイ                       | Palaeonemertea Heteronemertea Nematoda Patelloida pygmaea Cerithideopsilla cingulata                               | 199      |        |          |               |                |         | 0.05           | _        |
| 6 線升<br>7 軟存<br>8 9 10 11 12 13 14 15 16 16 17 18 19 20 21 22 23 24 25 26 27                                                            |                      | マキカ <sup>*</sup> イ綱                  | 原始腹足目中腹足目新腹足目                                                              | ウミナ科 ムシロカ・イ科 スイフカ・イ科                                   | ヘナタリガイ<br>ウミニナ<br>ムシロガイ                       | Nematoda Patelloida pygmaea Cerithideopsilla cingulata                                                             | 122      |        | _        | 5             |                |         |                | +        |
| 7 軟位<br>8 9 10 11 12 13 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27                                                                    |                      | マキカ <sup>*</sup> イ綱                  | 中腹足目<br>新腹足目<br>頭楯目<br>7初14目<br>7か17目                                      | ウミナ科 ムシロカ・イ科 スイフカ・イ科                                   | ヘナタリガイ<br>ウミニナ<br>ムシロガイ                       | Patelloida pygmaea<br>Cerithideopsilla cingulata                                                                   | 122      |        |          |               |                |         |                | <u> </u> |
| 8 9 10 11 11 12 13 14 15 16 16 17 18 19 20 21 22 23 24 22 5 26 27                                                                       | 体動物門                 |                                      | 中腹足目<br>新腹足目<br>頭楯目<br>7初14目<br>7か17目                                      | ウミナ科 ムシロカ・イ科 スイフカ・イ科                                   | ヘナタリガイ<br>ウミニナ<br>ムシロガイ                       | Cerithideopsilla cingulata                                                                                         |          |        | 5        |               |                |         | +              | <b>—</b> |
| 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27                                                                                 |                      | =マイガイ綱                               | 新腹足目<br>頭楯目<br>7ネガイ目<br>イガイ目                                               | ムシロカ・イ科スイフカ・イ科                                         | ウミニナ<br>ムシロガイ                                 |                                                                                                                    | 100      |        |          |               | 9.60           |         |                | <b>-</b> |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27                                |                      | =マイガイ綱                               | 頭楯目<br>7ネガイ目<br>イガイ目                                                       | スイフカ イ科                                                | ムシロガイ                                         | Batillaria multiformis                                                                                             |          |        |          |               |                |         |                |          |
| 12                                                                                                                                      |                      | ニマイカ・イ綱                              | フネカ イ目<br>イカ イ目                                                            |                                                        | アラムシロガイ                                       | Niotha livescens                                                                                                   |          |        |          |               |                |         |                |          |
| 13                                                                                                                                      |                      | 二マイカ・イ綱                              | フネカ イ目<br>イカ イ目                                                            |                                                        |                                               | Reticunassa festiva                                                                                                |          | 16     | 5        |               |                | 6.72    | 2.99           |          |
| 14                                                                                                                                      |                      | 三マイカーイ綱                              | イガイ目                                                                       | フネカーイ末年                                                | コメツブツララガイ                                     | Didontoglossa decoratoides                                                                                         |          |        |          |               |                |         |                | <b>.</b> |
| 15   16   17   18   19   20   21   22   23   24   25   26   27                                                                          |                      |                                      |                                                                            | /h/ /科                                                 | サルボウガイ<br>ホトトギスガイ                             | Scapharca subcrenata<br>Musculus senhousia                                                                         |          |        | 21       |               |                |         | +              | <b>—</b> |
| 16                                                                                                                                      |                      |                                      |                                                                            | イタホ゛カ゛キ科                                               | マガキ                                           | Crassostrea gigas                                                                                                  | 123      | 27     | 21       | 107           | 505. 55        | 556. 91 |                | 82. 08   |
| 18                                                                                                                                      |                      |                                      | マルスタ゛レカ゛イ目                                                                 | ツキカ・イ科                                                 | ウメノハナガイ                                       | Pillucina pisidium                                                                                                 |          |        |          |               |                |         |                |          |
| 19 20 21 22 23 24 25 26 27                                                                                                              |                      |                                      |                                                                            | ニッコウカ・イ科                                               |                                               | Tellinidae                                                                                                         |          |        |          | 5             |                |         |                | +        |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27                                                                                            |                      |                                      |                                                                            |                                                        | イチョウシラトリガイ                                    | Merisca capsoides                                                                                                  | 4.0      |        |          |               | 0.45           |         |                | <b>—</b> |
| 21<br>22<br>23<br>24<br>25<br>26<br>27                                                                                                  |                      |                                      |                                                                            |                                                        | モモノハナガイ<br>テリザクラガイ                            | Moerella jedoensis<br>Moerella iridescens                                                                          | 16<br>5  | 5      | 11       | 11            | 3. 15<br>1. 81 | 0.37    | 3, 95          | 1.01     |
| 22<br>23<br>24<br>25<br>26<br>27                                                                                                        |                      |                                      |                                                                            |                                                        | サクラガイ                                         | Nitidotellina nitidula                                                                                             |          | 5      | - 11     | - 11          | 1.01           | 0.69    | 0.50           | 1.01     |
| 24<br>25<br>26<br>27                                                                                                                    |                      |                                      |                                                                            |                                                        | ゴイサギガイ                                        | Macoma tokyoensis                                                                                                  |          | 11     |          |               |                | 7. 25   |                |          |
| 25<br>26<br>27                                                                                                                          |                      |                                      |                                                                            |                                                        | ヒメシラトリガイ                                      | Macoma incongrua                                                                                                   | 37       | 5      |          |               | 1.55           | 1.49    |                |          |
| 26<br>27                                                                                                                                |                      |                                      |                                                                            | アサシ゛カ゛イ科                                               | シズクガイ                                         | Theora fragilis                                                                                                    | 5        |        |          | 37            | 0.27           |         |                | 0.32     |
| 27                                                                                                                                      |                      |                                      |                                                                            | フナカ*タカ*イ科<br>マルスタ*レカ*イ科                                | ウネナシトマヤガイ<br>ヒメカノコアサリ                         | Trapezium liratum                                                                                                  | 32       | 16     |          | 11            | 25. 76         | 42. 99  |                | 17. 44   |
|                                                                                                                                         |                      |                                      |                                                                            | -PAY F# 14T                                            | アサリ                                           | Veremolpa micra<br>Ruditapes philippinarum                                                                         | 5        | 5      |          |               | 0.21           | 2.08    |                |          |
|                                                                                                                                         |                      |                                      |                                                                            |                                                        | イヨスダレガイ                                       | Paphia undulata                                                                                                    |          |        |          |               |                |         |                |          |
| 29                                                                                                                                      |                      |                                      |                                                                            |                                                        | オキシジミガイ                                       | Cyclina sinensis                                                                                                   |          |        |          |               |                |         |                |          |
|                                                                                                                                         | 形動物門                 | コ゛カイ綱                                | ホコサキコ゛カイ目                                                                  | おコサキコ・カイ科                                              | ナガホコムシ                                        | Haploscoloplos elongatus                                                                                           | 75       |        |          |               | 0.59           |         |                | <u> </u> |
| 31                                                                                                                                      |                      |                                      |                                                                            | 1                                                      | ヤツデホコムシ                                       | Haploscoloplos sp. Phylo fimbriatus                                                                                |          |        | 64       | 96            |                |         | 0.16           | 0.69     |
| 33                                                                                                                                      |                      |                                      | ヒトエラコ゛カイ目                                                                  | とトエラコ、カイ科                                              | ヤツアホコムシ                                       | Cossura sp.                                                                                                        |          |        | 53       | 21            |                |         | 0.05           | +        |
| 34                                                                                                                                      |                      |                                      | スピオ目                                                                       | スピ 材料                                                  |                                               | Polydora sp.                                                                                                       |          |        | 00       | 5             |                |         | 0.00           | +        |
| 35                                                                                                                                      |                      |                                      |                                                                            |                                                        | ソデナガスピオ                                       | Prionospio depauperata                                                                                             |          |        | 27       | 21            |                |         | 0.11           | 0.05     |
| 36                                                                                                                                      |                      |                                      |                                                                            |                                                        | エリタテスピオ                                       | Prionospio membranacea                                                                                             |          |        | 5        | 16            |                |         | +              | +        |
| 37                                                                                                                                      |                      |                                      |                                                                            |                                                        | イトエラスピオ                                       | Prionospio pulchra                                                                                                 |          |        |          | 53            |                |         |                | +        |
| 38                                                                                                                                      |                      |                                      |                                                                            |                                                        |                                               | Prionospio spp.  Pseudopolydora sp.                                                                                |          |        |          | 27            |                |         |                | 0.16     |
| 40                                                                                                                                      |                      |                                      |                                                                            |                                                        | アカテンスピオ                                       | Scolelepis variegata                                                                                               |          |        | 11       | 21            |                |         | +              | 0.10     |
| 41                                                                                                                                      |                      |                                      |                                                                            |                                                        |                                               | Scolelepis sp.                                                                                                     |          |        |          | 53            |                |         |                | 0.05     |
| 42                                                                                                                                      |                      |                                      |                                                                            |                                                        |                                               | Spiophanes sp.                                                                                                     |          |        |          |               |                |         |                |          |
| 43                                                                                                                                      |                      |                                      |                                                                            | モロテコ・カイ科                                               | モロテゴカイ                                        | Magelona japonica                                                                                                  |          |        |          |               |                |         |                | <b>—</b> |
| 44<br>45                                                                                                                                |                      |                                      |                                                                            | ミス゚ヒキゴカイ科                                              | ミズヒキゴカイ                                       | Cirratulidae Cirriformia tentaculata                                                                               |          |        |          |               |                |         |                | <b>—</b> |
| 46                                                                                                                                      |                      |                                      |                                                                            |                                                        | マスと マニルイ                                      | Tharyx sp.                                                                                                         |          |        | 11       | 59            |                |         | +              | 0.11     |
| 47                                                                                                                                      |                      |                                      | イトコ゛カイ目                                                                    | イトゴカイ科                                                 |                                               | Capitellidae                                                                                                       |          |        |          |               |                |         |                |          |
| 48                                                                                                                                      |                      |                                      |                                                                            |                                                        |                                               | Heteromastus sp.                                                                                                   | 11       | 11     | 16       | 91            | 0.16           | 0.16    | 0.05           | 0.21     |
| 49                                                                                                                                      |                      |                                      |                                                                            |                                                        |                                               | Mediomastus sp.                                                                                                    |          |        |          |               |                |         |                | <b></b>  |
| 50<br>51                                                                                                                                |                      |                                      |                                                                            | タケフシコ・カイ科                                              |                                               | Notomastus sp. Maldanidae                                                                                          |          |        |          |               |                |         |                | <b></b>  |
| 52                                                                                                                                      |                      |                                      | オフェリアコ゛カイ目                                                                 | オフェリアコ゛カイ科                                             | ツツオオフェリア                                      | Armandia lanceolata                                                                                                | 53       |        | 5        | 48            | 0. 27          |         | +              | 0.05     |
| 53                                                                                                                                      |                      |                                      | サシパコ゚カイ目                                                                   | サシハ゛コ゛カイ科                                              |                                               | Phyllodocidae                                                                                                      |          |        |          |               |                |         |                |          |
| 54                                                                                                                                      |                      |                                      |                                                                            |                                                        | ホソミサシバ                                        | Eteone longa                                                                                                       |          |        |          |               |                |         |                |          |
| 55                                                                                                                                      |                      |                                      |                                                                            | 4                                                      | フサツキウロコムシ亜科                                   | Eteone sp.                                                                                                         |          |        |          | 11            |                |         |                | +        |
| 56<br>57                                                                                                                                |                      |                                      |                                                                            | ウロコムシ科<br>オトヒメコ゛カイ科                                    | フザツキワロコムシ亜科                                   | Lepidonotus sp. Micropodarke sp.                                                                                   |          |        |          |               |                |         |                | <b>—</b> |
| 58                                                                                                                                      |                      |                                      |                                                                            | ATCA- MINT                                             |                                               | Gyptis sp.                                                                                                         |          |        |          | 5             |                |         |                | +        |
| 59                                                                                                                                      |                      |                                      |                                                                            | カギゴカイ科                                                 | ニホンカギゴカイ                                      | Cabira pilargiformis japonica                                                                                      |          |        |          | 5             |                |         |                | +        |
| 60                                                                                                                                      |                      |                                      |                                                                            |                                                        | クシカギゴカイ                                       | Sigambra phuketensis                                                                                               | 5        |        | 16       | 69            | +              |         | +              | 0.05     |
| 61<br>62                                                                                                                                |                      |                                      |                                                                            | シリス科<br>コ*カイ科                                          | ケナガシリス                                        | Langerhansia cornuta                                                                                               |          |        |          | 5             |                |         |                | 0.05     |
| 63                                                                                                                                      |                      |                                      |                                                                            | - カリ不生                                                 | コケゴカイ                                         | Nereiridae  Ceratonereis erythraeensis                                                                             |          |        |          |               | _              | _       |                |          |
| 64                                                                                                                                      |                      |                                      |                                                                            | 1                                                      | アシナガゴカイ                                       | Neanthes succinea                                                                                                  |          |        |          | 5             |                |         |                | +        |
| 65                                                                                                                                      |                      |                                      |                                                                            |                                                        | スナイソゴカイ                                       | Perinereis nuntia var.brevicirris                                                                                  | 37       | 11     |          | 32            | 2. 24          | 0.37    |                | 2.08     |
| 66                                                                                                                                      |                      |                                      |                                                                            | チリ科                                                    | チロリ                                           | Glycera chirori                                                                                                    | 5        |        |          |               | 0.21           |         |                | $\vdash$ |
| 67<br>68                                                                                                                                |                      |                                      |                                                                            | +                                                      | マキントシチロリ                                      | Glycera macintoshi                                                                                                 | 11       |        |          |               | 0.11           | -       |                | <b>-</b> |
| 69                                                                                                                                      |                      |                                      |                                                                            | ニカイチロリ科                                                | ヤマトキョウスチロリ                                    | Glycera sp.<br>Goniada japonica                                                                                    | 5        |        |          |               | 0.11           |         |                |          |
| 70                                                                                                                                      |                      |                                      |                                                                            | シロカ・ネコ・カイ科                                             | ミナミシロガネゴカイ                                    | Nephtys polybranchia                                                                                               | 5        |        | 5        | 37            | +              |         | +              | 0.05     |
| 71                                                                                                                                      |                      |                                      | イソメ目                                                                       | イソメ科                                                   | ホソナガエラムシ                                      | Marphysa depressa                                                                                                  |          |        |          |               |                |         |                |          |
| 72                                                                                                                                      |                      |                                      |                                                                            |                                                        |                                               | Marphysa sp.                                                                                                       |          |        |          |               |                |         |                |          |
| 73                                                                                                                                      |                      |                                      |                                                                            | ギボシイソメ科                                                | 4444122°                                      | Lumbrineris sp.                                                                                                    | 5        |        |          |               | 0.05           |         | 0.10           |          |
| 74<br>75                                                                                                                                |                      |                                      | タ゛ルマコ゛カイ目                                                                  | ダルマゴカイ科                                                | カタマガリギボシイソメ<br>ダルマゴカイ                         | Scoletoma longifolia<br>Sternaspis scutata                                                                         | 85<br>11 |        | 75<br>43 | 59<br>96      | 0.91           | _       | 0. 16<br>0. 59 | 0.32     |
| 76                                                                                                                                      |                      |                                      | #114                                                                       | ハボウキコ、カイ科                                              |                                               | Brada sp.                                                                                                          | - 11     |        | 10       | 50            | 1.01           |         | 0.00           | 5.71     |
| 77                                                                                                                                      |                      |                                      | ケヤリムシ目                                                                     | ケヤリムシ科                                                 | ヒガタケヤリムシ                                      | Laonome albicingillum                                                                                              |          |        |          |               |                |         |                |          |
| 78                                                                                                                                      |                      |                                      |                                                                            | カンサ゛シコ゛カイ科                                             | エゾカサネカンザシ                                     | Hydroides ezoensis                                                                                                 |          |        |          |               |                |         |                |          |
| 79 節月                                                                                                                                   | 足動物門                 | 甲殼綱                                  | フシ゛ツホ゛目                                                                    | 7ジツボ科                                                  | ヤッコカンザシ<br>シロスジフジツボ                           | Pomatoleios kraussii                                                                                               | 27       |        |          | 5             | 18. 35         |         |                | 0. 32    |
| 80 即2                                                                                                                                   | AC\$0.40(F)          | ・アルズ羽門                               | // /# H                                                                    | // /# #T                                               | アメリカフジツボ                                      | Balanus albicostatus<br>Balanus eburneus                                                                           | 27       | 5      |          | 11            | 7. 73          | 0.91    |                | 0. 32    |
| 82                                                                                                                                      |                      |                                      | 7ミ目                                                                        | アミ科                                                    |                                               | Mysidae                                                                                                            | 2.       |        |          |               |                | 3.01    |                | 0.50     |
| 83                                                                                                                                      |                      |                                      | ケーマ目                                                                       | ナキ゛サクーマ科                                               | ヴォントンプソンクーマ属                                  | Vaunthompsonia sp.                                                                                                 |          |        |          | 5             |                |         |                | +        |
| 84                                                                                                                                      |                      |                                      |                                                                            | クーマ科                                                   | クーマ属                                          | Diastylis sp.                                                                                                      |          |        |          |               |                |         |                |          |
| 85<br>86                                                                                                                                |                      |                                      | タナイス目<br>ワラシ <sup>*</sup> ムシ目                                              | タナイス科<br>スナウミナナフシ科                                     | キスイタナイス<br>ムロミスナウミナナフシ                        | Sinelobus sp.( cf.stanfordi)                                                                                       |          |        |          | 59            |                | _       |                | +        |
| 87                                                                                                                                      |                      |                                      | 7/7 A7 H                                                                   | コツブ、ムシ科                                                | イソコツブムシ属                                      | Cyathura muromiensis Gnorimosphaeroma sp.                                                                          | 53       |        |          | 5             | 0.64           |         |                | +        |
| 88                                                                                                                                      |                      |                                      | BOILE B                                                                    | ト*ロクタ*ムシ科                                              |                                               | Corophiidae                                                                                                        | 00       |        |          |               | 0.01           |         |                |          |
| 89                                                                                                                                      |                      |                                      |                                                                            |                                                        | ウエノドロクダムシ                                     | Corophium uenoi                                                                                                    |          |        |          | 64            |                |         |                | 0.08     |
| 90                                                                                                                                      |                      |                                      |                                                                            | イシクヨコエビ科                                               | クダオソコエビ                                       | Photis longicaudata                                                                                                |          |        |          |               |                |         |                |          |
| 91                                                                                                                                      |                      |                                      | whi P                                                                      | 刘列32E"科                                                | ヒゲツノメリタヨコエビ                                   | Melita setiflagella                                                                                                |          |        |          | 11            |                |         |                | 0.05     |
| 92<br>93                                                                                                                                |                      |                                      | It'                                                                        | テッポ ウエヒ 科                                              | セジロムラサキエビ<br>イソテッポウエビ                         | Athanas japonicus<br>Alpheus lobidens                                                                              |          |        |          | 5<br>5        |                |         |                | 0.05     |

|     |       |        |            |             |            | 調査項目                     |        | 個体数(   | 個体/m²)  |        |        | 湿重量    | $(g/m^2)$ |        |
|-----|-------|--------|------------|-------------|------------|--------------------------|--------|--------|---------|--------|--------|--------|-----------|--------|
|     | 種 名   |        |            |             |            |                          | H24. 5 | H24. 8 | H24. 11 | H25. 1 | H24. 5 | H24. 8 | H24. 11   | H25. 1 |
| 94  |       |        |            |             | テッポウエビ属    | Alpheus sp.              |        | 5      | 5       | 11     |        | 0.53   | 0.11      | 0.16   |
| 95  |       |        |            | スナモク゛リ科     | ニホンスナモグリ   | Callianassa japonica     |        |        |         |        |        |        |           |        |
| 96  |       |        |            | コフェシカ、二科    | ヘリトリコブシ    | Philyra heterograna      |        |        |         |        |        |        |           |        |
| 97  |       |        |            | ワタリカ゛ニ科     | イシガニ       | Charybdis japonica       |        |        |         |        |        |        |           |        |
| 98  |       |        |            | ムツハアリアケカ゛ニ科 | ムツハアリアケガニ  | Camptandrium sexdentatum |        |        | 11      | 11     |        |        | 0.05      | 0.27   |
| 99  |       |        |            | オサガニ科       | ヤマトオサガニ    | Macrophthalmus japonicus | 16     |        | 5       | 5      | 2.51   |        | 2.88      | 3.25   |
| 100 |       |        |            |             | オサガニ属      | Macrophthalmus sp.       |        |        |         | 5      |        |        |           | 0.05   |
| 101 |       |        |            | モクス゛カ゛ニ科    | タカノケフサイソガニ | Hemigrapsus takanoi      | 16     | 11     |         | 11     | 1.07   | 15. 57 |           | 2.45   |
| 102 |       |        |            |             | イソガニ属      | Hemigrapsus sp.          |        |        |         | 16     |        |        |           | 0.21   |
| 103 | 触手動物門 | 箒虫綱    | <b>等虫目</b> | ホウキムシ科      |            | Phoronis sp.             |        |        |         | 5      |        |        |           | +      |
| 104 | 棘皮動物門 | thr 綱  | モミシ゛カ゛イ目   | モミシ゛カ゛イ科    | モミジガイ      | Astropecten scoparius    |        |        |         |        |        |        |           |        |
| 105 |       | クモヒトデ綱 | クモヒトデ目     | スナクモヒトテ*科   | メガネクモヒトデ   | Amphiura aestuarii       |        |        |         |        |        |        |           |        |
| 計   |       |        | •          | •           | 種数         |                          | 25     | 13     | 20      | 45     | 25     | 13     | 20        | 45     |
| рІ  |       |        |            | 個体数         | または湿重量     |                          | 803    | 133    | 410     | 1,240  | 584.82 | 636.04 | 11.15     | 113.61 |

注)空欄は出現しなかったことを、湿重量の+表示は 0.01g/m² 未満を示す。

## ベントスの季節変化(p. 20) 【H-4】

|                                              | 種 名             |              |                         |                                                           |                                                              | 調査項目<br>                                                                                                               | H24 5  | 個体数(        | 個体/m²)<br>H24.11 | H25. 1   | H24. 5   | 湿重量<br>H24.8 | (g/m²)<br>H24.11 | H25. 1       |
|----------------------------------------------|-----------------|--------------|-------------------------|-----------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------|-------------|------------------|----------|----------|--------------|------------------|--------------|
| 1                                            | 刺胞動物門           | th'o虫綱       |                         |                                                           |                                                              | Hydrozoa                                                                                                               | nz4. 5 | TIZ4: 0     | 11/24.           | - nzə: T | - HZ4: 3 | 11Z4. 0      | 11/24.           | TIZU. I      |
| 2                                            | 紐形動物門           | fee to 1 com | 1.60.1.00               |                                                           |                                                              | NEMERTINEA                                                                                                             | 20     |             |                  |          | 0.13     |              |                  |              |
| 3                                            |                 | 無針綱          | 古紐虫目                    | リネウス科                                                     |                                                              | Palaeonemertea<br>Lineidae                                                                                             |        |             | 13               | 60<br>7  |          |              | +                | 0.07<br>1.80 |
| 5                                            | 軟体動物門           | tザラガイ綱       | 新比サーラカーイ目               | ウスヒサ゛ラカ゛イ科                                                | ウスヒザラガイ属                                                     | Ischnochiton sp.                                                                                                       |        |             | 7                |          |          |              | +                | 1.00         |
| 6                                            |                 | マキカ・イ綱       | 原始腹足目                   | ユキノカサカ* (科                                                | ヒメコザラガイ                                                      | Patelloida pygmaea                                                                                                     |        |             |                  |          |          |              |                  |              |
| 7                                            |                 |              | 中腹足目                    | ウミニナ科                                                     | ヘナタリガイ<br>ウミニナ                                               | Cerithideopsilla cingulata Batillaria multiformis                                                                      |        |             |                  |          |          |              |                  |              |
| 9                                            |                 |              | 新腹足目                    | ムシロカ・イ科                                                   | ムシロガイ                                                        | Niotha livescens                                                                                                       |        |             |                  |          |          |              |                  |              |
| 10                                           |                 |              |                         |                                                           | アラムシロガイ                                                      | Reticunassa festiva                                                                                                    | 107    | 53          | 100              |          | 58. 40   | 28. 73       | 56. 53           |              |
| 11<br>12                                     |                 |              | 頭楯目                     | スイフカ* イ科<br>キセワタカ* イ科                                     | コメツブツララガイ<br>キセワタガイ                                          | Didontoglossa decoratoides Philine argentata                                                                           |        |             |                  | 7        |          |              |                  | 0.33         |
| 13                                           |                 | ニマイカ・イ綱      | フネカ・イ目                  | 7初*1科                                                     | サルボウガイ                                                       | Scapharca subcrenata                                                                                                   |        |             |                  | ,        |          |              |                  | 0.33         |
| 14                                           |                 |              | イガイ目                    | 仂* /科                                                     | ホトトギスガイ                                                      | Musculus senhousia                                                                                                     |        |             |                  |          |          |              |                  |              |
| 15<br>16                                     |                 |              | ウク・イスカ・イ目<br>マルスタ・レカ・イ目 | イタホ <sup>*</sup> カ <sup>*</sup> キ科<br>ツキカ <sup>*</sup> イ科 | マガキ ウメノハナガイ                                                  | Crassostrea gigas<br>Pillucina pisidium                                                                                |        | 27          | 20               |          |          | #######      | 25. 00           |              |
| 17                                           |                 |              | *#A7 V# 1日              | / 1/1 1/1 1/1 1 1 1 1 1 1 1 1 1 1 1 1 1                   | チョノハナガイ                                                      | Raetellops pulchella                                                                                                   |        |             |                  | 7        |          |              |                  | 0.07         |
| 18                                           |                 |              |                         | ザルガイ科                                                     | チゴトリガイ                                                       | Fulvia hungerfordi                                                                                                     |        |             | 7                |          |          |              | +                |              |
| 19<br>20                                     |                 |              |                         | ニッコウカ・イ科                                                  | イチョウシラトリガイ<br>モモノハナガイ                                        | Merisca capsoides                                                                                                      |        |             |                  |          |          |              |                  |              |
| 21                                           |                 |              |                         | +                                                         | テリザクラガイ                                                      | Moerella jedoensis<br>Moerella iridescens                                                                              |        |             |                  |          |          |              |                  |              |
| 22                                           |                 |              |                         |                                                           | ゴイサギガイ                                                       | Macoma tokyoensis                                                                                                      |        | 13          |                  |          |          | 2. 07        |                  |              |
| 23                                           |                 |              |                         |                                                           | ヒメシラトリガイ                                                     | Macoma incongrua                                                                                                       | 80     |             |                  | 13       | 2.00     |              |                  | 0.07         |
| 24<br>25                                     |                 |              |                         | 7サシ*カ*イ科<br>7ナカ*タカ*イ科                                     | シズクガイ<br>ウネナシトマヤガイ                                           | Theora fragilis                                                                                                        | 513    | 33          | 33               | 1, 140   | 7. 20    | 0.47         | 0. 13            | 9.73         |
| 26                                           |                 |              |                         | マルスタ・レカ・イ科                                                | ヒメカノコアサリ                                                     | Trapezium liratum<br>Veremolpa micra                                                                                   |        |             |                  |          |          |              |                  |              |
| 27                                           |                 |              |                         |                                                           | アサリ                                                          | Ruditapes philippinarum                                                                                                |        |             |                  |          |          |              |                  |              |
| 28                                           |                 |              |                         |                                                           | イヨスダレガイ                                                      | Paphia undulata                                                                                                        |        |             |                  |          |          |              |                  |              |
| 29                                           | 環形動物門           | ¬° + / 经国    | ホコサキコ゛カイ目               | ポコサキコ゛カイ科                                                 | オキシジミガイナガホコムシ                                                | Cyclina sinensis                                                                                                       | 12     | 7           |                  |          | 0. 27    | 0. 07        |                  |              |
| 30<br>31                                     | ○米 // > 類月物[**] | コ゛カイ綱        | #4714 #1H               | 40ペリイン ガイオー                                               | ノルかコムン                                                       | Haploscoloplos elongatus<br>Haploscoloplos sp.                                                                         | 13     | <del></del> |                  | 7        | 0. 27    | 0.07         |                  | 0.07         |
| 32                                           |                 | <u> </u>     |                         |                                                           | ヤツデホコムシ                                                      | Phylo fimbriatus                                                                                                       |        |             |                  |          |          |              |                  |              |
| 33                                           |                 |              | とトエラコ゛カイ目               | とトエラコ゛カイ科                                                 |                                                              | Cossura sp.                                                                                                            | 13     |             | 7                | 233      | +        |              | +                | 0.07         |
| 34<br>35                                     |                 |              | スピオ目                    | Zt° 才科                                                    | シノブハネエラスピオ<br>ソデナガスピオ                                        | Paraprionospio patiens Prionospio depauperata                                                                          | 47     |             | 7<br>133         | 427      | 0. 40    |              | +<br>0. 33       | 3. 27        |
| 36                                           |                 |              |                         |                                                           | エリタテスピオ                                                      | Prionospio membranacea                                                                                                 | 41     |             | 7                | 27       | 0.40     |              | +                | +            |
| 37                                           |                 |              |                         |                                                           | イトエラスピオ                                                      | Prionospio pulchra                                                                                                     |        |             |                  | 20       |          |              |                  | +            |
| 38                                           |                 |              |                         |                                                           | フタエラスピオ                                                      | Prionospio sexoculata                                                                                                  |        | 7           |                  |          |          | 0.13         |                  |              |
| 39<br>40                                     |                 |              |                         | +                                                         |                                                              | Prionospio spp.  Pseudopolydora sp.                                                                                    |        |             |                  | 7        |          |              |                  | +            |
| 41                                           |                 |              |                         |                                                           |                                                              | Rhynchospio sp.                                                                                                        |        |             |                  | 7        |          |              |                  | +            |
| 42                                           |                 |              |                         |                                                           | アカテンスピオ                                                      | Scolelepis variegata                                                                                                   |        |             | 7                | 7        |          |              | +                | 0.07         |
| 43                                           |                 |              |                         | -                                                         |                                                              | Scolelepis sp.                                                                                                         | 10     |             |                  |          |          |              |                  |              |
| 44<br>45                                     |                 |              |                         | モロテコ゛カイ科                                                  | モロテゴカイ                                                       | Spiophanes sp.  Magelona japonica                                                                                      | 13     |             |                  |          | +        |              |                  |              |
| 46                                           |                 |              |                         | ミス゚ヒキコ゚カイ科                                                | 4.7.7.7                                                      | Cirratulidae                                                                                                           | 20     |             |                  |          | 0.07     |              |                  |              |
| 47                                           |                 |              |                         |                                                           | ミズヒキゴカイ                                                      | Cirriformia tentaculata                                                                                                |        |             |                  |          |          |              |                  |              |
| 48<br>49                                     |                 |              | イトコーカイ目                 | 小ゴカ/科                                                     |                                                              | Tharyx sp.                                                                                                             |        |             | 7                | 7        |          |              | +                | +            |
| 50                                           |                 |              | 11- 111                 | 11-2 //14-1                                               |                                                              | Capitellidae  Heteromastus sp.                                                                                         | 20     |             |                  | 87       | 0. 20    |              |                  | 0.73         |
| 51                                           |                 |              |                         |                                                           |                                                              | Mediomastus sp.                                                                                                        |        |             |                  |          |          |              |                  |              |
| 52                                           |                 |              |                         |                                                           |                                                              | Notomastus sp.                                                                                                         |        |             |                  |          |          |              |                  |              |
| 53<br>54                                     |                 |              | オフェリアコ゛カイ目              | タケフシコ * カイ科<br>オフェリアコ * カイ科                               | ツツオオフェリア                                                     | Maldanidae<br>Armandia lanceolata                                                                                      | 7 73   | 7           |                  |          | 0. 07    | 0. 07        |                  |              |
| 55                                           |                 |              | サシハ゛コ゛カイ目               | サシハ゛コ゛カイ科                                                 | 22447477                                                     | Phyllodocidae Phyllodocidae                                                                                            | 10     | · '         |                  |          | 0.21     | 0.01         |                  |              |
| 56                                           |                 |              |                         |                                                           | ホソミサシバ                                                       | Eteone longa                                                                                                           |        |             |                  |          |          |              |                  |              |
| 57                                           |                 |              |                         | ウロコムシ科                                                    | フサツキウロコムシ亜科                                                  | Lepidonotus sp.                                                                                                        | 400    |             |                  |          |          |              |                  |              |
| 58<br>59                                     |                 |              |                         | オトヒメコ゛カイ科                                                 |                                                              | Micropodarke sp.  Gyptis sp.                                                                                           | 100    |             | 13               |          | 1. 13    |              | 0.07             |              |
| 60                                           |                 |              |                         |                                                           |                                                              | Nereimyra sp.                                                                                                          |        |             | 7                |          |          |              | +                |              |
| 61                                           |                 |              |                         | 力丰"コ"力/科                                                  | クシカギゴカイ                                                      | Sigambra phuketensis                                                                                                   | 20     |             | 7                | 67       | 0.07     |              | +                | 0.07         |
| 62<br>63                                     |                 |              |                         | シリス科<br>コ*カイ科                                             |                                                              | Typosyllis sp.                                                                                                         |        |             | 7                |          |          |              | +                |              |
| 64                                           |                 |              |                         | - N14T                                                    | コケゴカイ                                                        | Nereiridae  Ceratonereis erythraeensis                                                                                 |        |             | - '              |          |          |              | -                |              |
| 65                                           |                 |              |                         |                                                           | スナイソゴカイ                                                      | Perinereis nuntia var.brevicirris                                                                                      |        |             |                  |          |          |              |                  |              |
| 66                                           |                 |              |                         | チロリ科                                                      | チロリ                                                          | Glycera chirori                                                                                                        |        |             |                  | 7        |          |              |                  | 1.60         |
| 67<br>68                                     |                 |              |                         |                                                           | マキントシチロリ                                                     | Glycera macintoshi Glycera sp.                                                                                         | 7      | 7           |                  |          | 0. 07    | 0.40         |                  |              |
| 69                                           |                 |              |                         | ニカイチロリ科                                                   | ヤマトキョウスチロリ                                                   | Goniada japonica                                                                                                       | · ·    | <u> </u>    |                  |          | 0.01     | 0. 40        |                  |              |
| 70                                           |                 |              |                         | シロカ゛ネゴカイ科                                                 | ミナミシロガネゴカイ                                                   | Nephtys polybranchia                                                                                                   |        |             | 13               | 20       |          |              | +                | 0.07         |
| 71                                           |                 |              | イソメ目                    | イソメ科                                                      | ホソナガエラムシ                                                     | Marphysa depressa                                                                                                      |        |             |                  |          |          |              |                  |              |
| 72<br>73                                     |                 |              |                         | ギボシイソメ科                                                   | コアシギボシイソメ                                                    | Marphysa sp. Lumbrineris nipponica                                                                                     |        |             | 7                |          |          |              | 4. 73            |              |
| 74                                           |                 |              |                         |                                                           |                                                              | Lumbrineris sp.                                                                                                        |        |             |                  |          |          |              |                  |              |
| 75                                           |                 |              |                         |                                                           | カタマガリギボシイソメ                                                  | Scoletoma longifolia                                                                                                   | 213    | 93          | 80               | 113      | 3. 27    | 1.60         | 0. 20            | 0.87         |
| 76<br>77                                     |                 | -            | ダルマゴカイ目                 | タ*ルマコ*カイ科<br>ハボ*ウキコ*カイ科                                   | ダルマゴカイ                                                       | Sternaspis scutata                                                                                                     | 7      | 7           |                  |          | 0. 07    | 0.47         |                  |              |
| 78                                           |                 |              | ケヤリムシ目                  | ケヤリムシ科                                                    |                                                              | Brada sp. Chone sp.                                                                                                    |        |             |                  | 7        |          |              |                  | +            |
| 79                                           |                 |              |                         |                                                           | ヒガタケヤリムシ                                                     | Laonome albicingillum                                                                                                  |        |             |                  |          |          |              |                  |              |
| 80                                           |                 |              |                         | カンサ゛シコ゛カイ科                                                | エゾカサネカンザシ                                                    | Hydroides ezoensis                                                                                                     |        |             | 7                |          |          |              | +                |              |
| 81<br>82                                     |                 | 甲殼綱          | フシ゛ツボ目                  | フジ ツボ科                                                    | ヤッコカンザシ<br>シロスジフジツボ                                          | Pomatoleios kraussii<br>Balanus albicostatus                                                                           |        |             |                  |          |          |              |                  |              |
| 02                                           | 節足動物門           |              |                         | 7 7 TT                                                    |                                                              | Balanus eburneus                                                                                                       |        | 7           |                  |          |          | 4. 20        |                  |              |
| 83                                           | 節足動物門           | 1 365/175    |                         |                                                           | アメリカフジツボ                                                     |                                                                                                                        |        |             |                  |          |          |              |                  |              |
| 83<br>84                                     | 節足動物門           | 1 MARY       | アミ目                     | アミ科                                                       |                                                              | Mysidae                                                                                                                | 7      |             |                  |          | +        |              |                  |              |
| 83<br>84<br>85                               | 節足動物門           | 1 355773     |                         | ナギサクーマ科                                                   | ヴォントンプソンクーマ属                                                 | Mysidae<br>Vaunthompsonia sp.                                                                                          | 7      |             |                  | 13       | +        |              |                  | +            |
| 83<br>84<br>85<br>86                         | 節足動物門           | I BATT       | アミ目<br>クーマ目             | ナキ*サクーマ科<br>クーマ科                                          | ヴォントンプソンクーマ属<br>クーマ属                                         | Mysidae<br>Vaunthompsonia sp.<br>Diastylis sp.                                                                         | 7      |             |                  | 13       | +        |              |                  | +            |
| 83<br>84<br>85                               | 節足動物門           | 1 100,000    | アミ目                     | ナギサクーマ科                                                   | ヴォントンプソンクーマ属                                                 | Mysidae<br>Vaunthompsonia sp.                                                                                          | 7      |             |                  | 13       | +        |              |                  | +            |
| 83<br>84<br>85<br>86<br>87<br>88<br>89       | 節足動物門           | 1 100,000    | アミ目<br>クーマ目             | ナキ・サクーマ科<br>クーマ科<br>スナウミナナフシ科<br>コツフ・ムシ科<br>エンホ・ソコエヒ・科    | ヴォントンプソンクーマ属<br>クーマ属<br>ムロミスナウミナナフシ                          | Mysidae Vaunthompsonia sp. Diastylis sp. Cyathura muromiensis Gnorimosphaeroma sp. Grandidierella japonica             | 7      |             | 7                | 13       | +        |              | +                | 0.20         |
| 83<br>84<br>85<br>86<br>87<br>88<br>89<br>90 | 節足動物門           | 1 355/99     | アミ目<br>クーマ目<br>ワラシ ムシ目  | ナキ*サクーマ科<br>クーマ科<br>スナウミナナフシ科<br>コツフ* ムシ科                 | ヴォントンプソンクーマ属<br>クーマ属<br>ムロミスナウミナナフシ<br>イソコツブムシ属<br>ニホンドロソコエビ | Mysidae Vaunthompsonia sp. Diastylis sp. Cyathura muromiensis Gnorimosphaeroma sp. Grandidierella japonica Corophiidae | 7      |             | 7                | 67       | +        |              |                  | 0. 20        |
| 83<br>84<br>85<br>86<br>87<br>88<br>89       | 節足動物門           | 1 355,079    | アミ目<br>クーマ目<br>ワラシ ムシ目  | ナキ・サクーマ科<br>クーマ科<br>スナウミナナフシ科<br>コツフ・ムシ科<br>エンホ・ソコエヒ・科    | ヴォントンプソンクーマ属<br>クーマ属<br>ムロミスナウミナナフシ<br>イソコツブムシ属              | Mysidae Vaunthompsonia sp. Diastylis sp. Cyathura muromiensis Gnorimosphaeroma sp. Grandidierella japonica             | 7      |             | 7 20             |          | +        |              |                  |              |

|     |       |                    |          |           |            | 調査項目                     |        | 個体数(   | 個体/m²)  |        |        | 湿重量     | $(g/m^2)$ |        |
|-----|-------|--------------------|----------|-----------|------------|--------------------------|--------|--------|---------|--------|--------|---------|-----------|--------|
|     | 種 名   |                    |          |           |            | 調査年月                     | H24. 5 | H24. 8 | H24. 11 | H25. 1 | H24. 5 | H24. 8  | H24. 11   | H25. 1 |
| 94  |       |                    | ıt"目     | テッポ ウエヒ 科 | テッポウエビ属    | Alpheus sp.              |        |        | 7       |        |        |         | +         |        |
| 95  |       |                    |          | スナモク*リ科   | ニホンスナモグリ   | Callianassa japonica     |        |        |         |        |        |         |           |        |
| 96  |       |                    |          | コプシカ゚ニ科   | ヘリトリコブシ    | Philyra heterograna      |        |        |         |        |        |         |           |        |
| 97  |       |                    |          | ワタリカ゛ニ科   | イシガニ       | Charybdis japonica       | 7      |        |         |        | 96. 73 |         |           |        |
| 98  |       |                    |          | オサガニ科     | ヤマトオサガニ    | Macrophthalmus japonicus |        |        |         |        |        |         |           |        |
| 99  |       |                    |          | モクス゛カ゛ニ科  | タカノケフサイソガニ | Hemigrapsus takanoi      |        |        |         |        |        |         |           |        |
| 100 |       |                    |          |           | イソガニ属      | Hemigrapsus sp.          |        |        | 7       |        |        |         | +         |        |
| 101 | 触手動物門 | 箒虫綱                | 箒虫目      | ホウキムシ科    |            | Phoronis sp.             |        |        | 7       |        |        |         | +         |        |
| 102 | 棘皮動物門 | thr <sup>*</sup> 綱 | モミシ゛カ゛イ目 | モミジガイ科    | モミジガイ      | Astropecten scoparius    |        |        |         |        |        |         |           |        |
| 103 |       | クモヒトデ綱             | クモヒトテ゛目  | スナクモヒトテ゛科 | メガネクモヒトデ   | Amphiura aestuarii       |        |        |         |        |        |         |           |        |
| 104 | 脊索動物門 | お綱                 | マメホ*ヤ目   | ユウレイホ*ヤ科  | ユウレイボヤ属    | Ciona sp.                |        |        | 7       |        |        |         | 0.07      |        |
| 31  |       |                    |          |           | 種数         |                          | 19     | 11     | 27      | 24     | 19     | 11      | 27        | 24     |
| рΙ  |       |                    |          | 個体数       | または湿重量     | -                        | 1, 287 | 261    | 551     | 2,377  | 170.35 | ####### | 87.06     | 19.09  |

注)空欄は出現しなかったことを、湿重量の+表示は 0.01g/m²未満を示す。

## ベントスの季節変化 (p. 20) 【S-1】

|                                                                                                          | 種 名   |         |             |                                                                      |                                                                                                         | 調査項目 調査年月                                                                                                                                                                                                                                              | H24.5    |         | 個体/m²)<br>H24.11                    | H25. 1                    | H24.5   | 湿重量<br>H24.8            | (g/m²)<br>H24.11                                    | H25 1                        |
|----------------------------------------------------------------------------------------------------------|-------|---------|-------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|-------------------------------------|---------------------------|---------|-------------------------|-----------------------------------------------------|------------------------------|
| 1                                                                                                        | 刺胞動物門 | 花虫綱     | イゾキ゛ンチャク目   | ムシモト* キキ*ンチャク科                                                       |                                                                                                         | Edwardsiidae                                                                                                                                                                                                                                           | 1124. 5  | 1124. 0 | 7                                   | 7                         | 1124. 3 | 1124. 0                 | 0.07                                                | 0.07                         |
| 2                                                                                                        |       | th*o虫綱  |             |                                                                      |                                                                                                         | Hydrozoa                                                                                                                                                                                                                                               | +        | +       |                                     |                           | +       | +                       |                                                     |                              |
| 3                                                                                                        | 扁形動物門 | 渦虫綱     | 多岐腸目        |                                                                      |                                                                                                         | Polyclada                                                                                                                                                                                                                                              |          |         | 13                                  | 20                        |         |                         | 0.07                                                | 0.13                         |
| 4<br>5                                                                                                   | 紐形動物門 | 無針綱     | 古紐虫目        |                                                                      |                                                                                                         | NEMERTINEA                                                                                                                                                                                                                                             | 13       |         | 120                                 | 173                       | 2. 73   |                         | 0.13                                                | 0.47                         |
| 6                                                                                                        |       |         | 異紐虫目        |                                                                      |                                                                                                         | Palaeonemertea<br>Heteronemertea                                                                                                                                                                                                                       |          |         | 120                                 | 173                       |         |                         | 0.13                                                | 0.47                         |
| 7                                                                                                        |       |         | 2444241     | リネウス科                                                                |                                                                                                         | Lineidae                                                                                                                                                                                                                                               |          |         | 20                                  | 7                         |         |                         | 0.33                                                | 0.87                         |
| 8                                                                                                        |       | 有針綱     | 針紐虫目        |                                                                      |                                                                                                         | Hoplonemertini                                                                                                                                                                                                                                         |          |         |                                     | 13                        |         |                         |                                                     | 0.20                         |
| 9                                                                                                        | 線形動物門 | 線虫綱     |             |                                                                      |                                                                                                         | Nematoda                                                                                                                                                                                                                                               |          |         | 287                                 | 220                       |         |                         | 0.07                                                | 0.07                         |
| 10                                                                                                       | 軟体動物門 | マキカ゛イ綱  | 原始腹足目       | ユキノカサカ゛イ科                                                            | ヒメコザラガイ                                                                                                 | Patelloida pygmaea                                                                                                                                                                                                                                     |          |         |                                     |                           |         |                         |                                                     |                              |
| 11                                                                                                       |       |         | 中腹足目        | ウミニナ科                                                                | ヘナタリガイ<br>ウミニナ                                                                                          | Cerithideopsilla cingulata                                                                                                                                                                                                                             |          |         |                                     |                           |         |                         |                                                     |                              |
| 12<br>13                                                                                                 |       |         | 新腹足目        | ムシロカ・イ科                                                              | <b>リミーフ</b><br>ムシロガイ                                                                                    | Batillaria multiformis Niotha livescens                                                                                                                                                                                                                | 7        | 7       |                                     |                           | 2. 07   | 7. 93                   |                                                     |                              |
| 14                                                                                                       |       |         | ATTRICAC II | 141                                                                  | アラムシロガイ                                                                                                 | Reticunassa festiva                                                                                                                                                                                                                                    | ·        |         |                                     |                           | 2.01    | 11.00                   |                                                     |                              |
| 15                                                                                                       |       |         | 腸紐目         | トウカ゛タカ゛イ科                                                            | クチキレガイ                                                                                                  | Tiberia pulchella                                                                                                                                                                                                                                      |          |         | 7                                   |                           |         |                         | 0.07                                                |                              |
| 16                                                                                                       |       |         |             |                                                                      | イトカケギリ属                                                                                                 | Turbonilla sp.                                                                                                                                                                                                                                         |          |         |                                     | 7                         |         |                         |                                                     | +                            |
| 17                                                                                                       |       |         | 頭楯目         | スイフカ・イ科                                                              | コメツブツララガイ                                                                                               | Didontoglossa decoratoides                                                                                                                                                                                                                             |          | _       |                                     |                           |         |                         |                                                     |                              |
| 18<br>19                                                                                                 |       |         |             | キセワタカ・イ科                                                             | キセワタガイ<br>ヨコヤマキセワタガイ                                                                                    | Philine argentata Yokoyamaia ornatissima                                                                                                                                                                                                               |          | 7       | 47                                  | 33                        |         | 3. 00                   | 0.13                                                | 0.20                         |
| 20                                                                                                       |       | ニマイカ・イ綱 | 7ネガイ目       | フネカ・イ科                                                               | サルボウガイ                                                                                                  | Scapharca subcrenata                                                                                                                                                                                                                                   | 7        |         | 41                                  |                           | 2. 27   |                         | 0.13                                                |                              |
| 21                                                                                                       |       | 0. 1412 | /ガ/目        | 仂" /科                                                                | ホトトギスガイ                                                                                                 | Musculus senhousia                                                                                                                                                                                                                                     | 1, 160   | 1,527   | 2,080                               | 1,693                     | 174. 47 | 765. 67                 | 558. 73                                             | 368. 27                      |
| 22                                                                                                       |       |         | ウク゛イスカ゛イ目   | イタホ゛カ゛キ科                                                             | マガキ                                                                                                     | Crassostrea gigas                                                                                                                                                                                                                                      |          |         |                                     |                           |         |                         |                                                     |                              |
| 23                                                                                                       |       |         | マルスダ゛レカ゛イ目  | ツキカ・イ科                                                               | ウメノハナガイ                                                                                                 | Pillucina pisidium                                                                                                                                                                                                                                     | 7        |         |                                     |                           | 0.47    |                         |                                                     |                              |
| 24                                                                                                       |       |         |             | バカガイ科                                                                | チョノハナガイ                                                                                                 | Raetellops pulchella                                                                                                                                                                                                                                   |          | 7       |                                     |                           |         | 1. 87                   |                                                     |                              |
| 25                                                                                                       |       |         |             | ニッコウカ・イ科                                                             | イチョウシラトリガイ                                                                                              | Merisca capsoides                                                                                                                                                                                                                                      |          |         |                                     |                           |         |                         |                                                     |                              |
| 26<br>27                                                                                                 |       | 1       |             | 1                                                                    | モモノハナガイ<br>テリザクラガイ                                                                                      | Moerella jedoensis<br>Moerella iridescens                                                                                                                                                                                                              |          |         |                                     |                           |         | -                       |                                                     |                              |
| 28                                                                                                       |       |         |             |                                                                      | ゴイサギガイ                                                                                                  | Macoma tokyoensis                                                                                                                                                                                                                                      | 13       | 7       |                                     |                           | 7. 47   | 2. 80                   |                                                     |                              |
| 29                                                                                                       |       |         |             |                                                                      | ヒメシラトリガイ                                                                                                | Macoma incongrua                                                                                                                                                                                                                                       |          |         | 7                                   | 7                         |         |                         | 6. 87                                               | 1.07                         |
| 30                                                                                                       |       |         |             | アサシ゛カ゛イ科                                                             | シズクガイ                                                                                                   | Theora fragilis                                                                                                                                                                                                                                        |          | 47      | 247                                 | 393                       |         | 0.87                    | 0.47                                                | 0.87                         |
| 31                                                                                                       |       | 1       |             | フナカ・タカ・イ科                                                            | ウネナシトマヤガイ                                                                                               | Trapezium liratum                                                                                                                                                                                                                                      | -        |         |                                     |                           | L.      |                         |                                                     |                              |
| 32                                                                                                       |       |         |             | マルスタ゛レカ゛イ科                                                           | ヒメカノコアサリ<br>アサリ                                                                                         | Veremolpa micra                                                                                                                                                                                                                                        | 7        |         |                                     |                           | 0. 20   |                         |                                                     |                              |
| 34                                                                                                       |       |         | -           |                                                                      | イヨスダレガイ                                                                                                 | Ruditapes philippinarum Paphia undulata                                                                                                                                                                                                                | 7        | 7       |                                     |                           | 6. 33   | 2. 73                   |                                                     |                              |
| 35                                                                                                       |       |         |             |                                                                      | オキシジミガイ                                                                                                 | Cyclina sinensis                                                                                                                                                                                                                                       | ·        |         |                                     |                           | 0.00    | 2                       |                                                     |                              |
| 36                                                                                                       | 環形動物門 | コ゛カイ綱   | ホコサキコ゛カイ目   | ホコサキコ゛カイ科                                                            | ナガホコムシ                                                                                                  | Haploscoloplos elongatus                                                                                                                                                                                                                               |          |         |                                     |                           |         |                         |                                                     |                              |
| 37                                                                                                       |       |         |             |                                                                      |                                                                                                         | Haploscoloplos sp.                                                                                                                                                                                                                                     |          |         |                                     | 13                        |         |                         |                                                     | 0.07                         |
| 38                                                                                                       |       |         |             |                                                                      | ヤツデホコムシ                                                                                                 | Phylo fimbriatus                                                                                                                                                                                                                                       | 13       |         |                                     |                           | 6. 40   |                         |                                                     |                              |
| 39                                                                                                       |       |         | 11.2.3 17.P | 1.1                                                                  |                                                                                                         | Phylo sp.                                                                                                                                                                                                                                              |          | 7       | 7                                   |                           |         | 2. 87                   | 1.00                                                |                              |
| 40                                                                                                       |       |         | ヒトエラコ゛カイ目   | thエゔコ*カイ科                                                            | ニホンヒメエラゴカイ                                                                                              | Cossura sp. Paraoneis nipponica                                                                                                                                                                                                                        |          | 13      |                                     |                           |         | 0.07                    |                                                     |                              |
| 42                                                                                                       |       |         | スピオ目        | スピオ科                                                                 | ケンサキスピオ                                                                                                 | Aonides oxycephala                                                                                                                                                                                                                                     |          | 10      | 7                                   |                           |         | 0.01                    | +                                                   |                              |
| 43                                                                                                       |       |         | 7.0 A E     | 7.0 4.11                                                             | 7 7 17 10 14                                                                                            | Boccardiella sp.                                                                                                                                                                                                                                       |          |         | 13                                  | 33                        |         |                         | 0.07                                                | 0.20                         |
| 44                                                                                                       |       |         |             |                                                                      | シノブハネエラスピオ                                                                                              | Paraprionospio patiens                                                                                                                                                                                                                                 |          |         | 13                                  | 20                        |         |                         | 0.07                                                | 0.13                         |
| 45                                                                                                       |       |         |             |                                                                      | フクロハネエラスピオ                                                                                              | Paraprionospio cordifolia                                                                                                                                                                                                                              |          |         |                                     | 7                         |         |                         |                                                     | 0.07                         |
| 46                                                                                                       |       |         |             |                                                                      | U=1.44 - 10.1                                                                                           | Polydora sp.                                                                                                                                                                                                                                           |          |         | 127                                 | 20                        |         |                         | 0. 20                                               | 0.07                         |
| 47<br>48                                                                                                 |       |         |             |                                                                      | ソデナガスピオ<br>イトエラスピオ                                                                                      | Prionospio depauperata Prionospio pulchra                                                                                                                                                                                                              |          |         | 33                                  | 47                        |         |                         | +                                                   | +                            |
| 49                                                                                                       |       |         |             |                                                                      | ニホンヒメエラゴカイ                                                                                              | Paraoneis nipponica                                                                                                                                                                                                                                    |          | 13      |                                     | - 11                      |         | 0.07                    |                                                     |                              |
| 50                                                                                                       |       |         |             |                                                                      | フタエラスピオ                                                                                                 | Prionospio sexoculata                                                                                                                                                                                                                                  |          | 7       |                                     |                           |         | 0.07                    |                                                     |                              |
| 51                                                                                                       |       |         |             |                                                                      |                                                                                                         | Prionospio spp.                                                                                                                                                                                                                                        | 20       |         |                                     | 20                        | 0.13    |                         |                                                     | +                            |
| 52                                                                                                       |       |         |             |                                                                      |                                                                                                         | Pseudopolydora sp.                                                                                                                                                                                                                                     |          |         | 40                                  | 7                         |         |                         | 0.07                                                | +                            |
| 53<br>54                                                                                                 |       |         |             |                                                                      | アカテンスピオ                                                                                                 | Scolelepis variegata                                                                                                                                                                                                                                   | 70       |         | 13                                  |                           | 0.47    |                         | 0. 13<br>+                                          |                              |
| 55                                                                                                       |       |         |             |                                                                      |                                                                                                         | Scolelepis sp. Spiophanes sp.                                                                                                                                                                                                                          | 73       |         | 13                                  |                           | 0. 47   |                         | +                                                   |                              |
| 56                                                                                                       |       |         |             | モロテコ゛カイ科                                                             | モロテゴカイ                                                                                                  | Magelona japonica                                                                                                                                                                                                                                      | 7        |         | 73                                  | 147                       | +       |                         | 0. 13                                               | 0.53                         |
| 57                                                                                                       |       |         |             | ツハ゛サコ゛カイ科                                                            | ツバサゴカイ                                                                                                  | Chaetopterus variopedatus                                                                                                                                                                                                                              |          |         |                                     | 7                         |         |                         |                                                     | 0.07                         |
| 58                                                                                                       |       |         |             |                                                                      | アシビキツバサゴカイ                                                                                              | Spiochaetopterus costarum                                                                                                                                                                                                                              |          | 13      | 113                                 | 80                        |         | 0.07                    | 0. 20                                               | 0.13                         |
| 59                                                                                                       |       |         |             | ミス* ヒキコ*カイ科                                                          |                                                                                                         | Cirratulidae                                                                                                                                                                                                                                           |          |         |                                     |                           |         |                         |                                                     |                              |
| 60                                                                                                       |       |         | /1=*4/8     | 71 = 2 ± 7551                                                        | ミズヒキゴカイ                                                                                                 | Cirriformia tentaculata                                                                                                                                                                                                                                | 10       |         |                                     |                           | 0.00    |                         |                                                     |                              |
| 61<br>62                                                                                                 |       | +       | イトコ゛カイ目     | イトゴカイ科                                                               | <u> </u>                                                                                                | Capitellidae  Heteromastus sp.                                                                                                                                                                                                                         | 13<br>33 | 87      | 127                                 | 147                       | 0.60    | 1. 40                   | 0. 33                                               | 0.60                         |
| 63                                                                                                       |       | 1       |             |                                                                      |                                                                                                         | Mediomastus sp.                                                                                                                                                                                                                                        | 1 55     |         | 193                                 | 293                       | 0.00    | 1. 20                   | 0.07                                                | 0.33                         |
| 64                                                                                                       |       |         |             |                                                                      |                                                                                                         | Notomastus sp.                                                                                                                                                                                                                                         | 13       |         | 20                                  | 40                        | 0. 20   |                         | 0.33                                                | 1.60                         |
| 65                                                                                                       |       |         |             | タケフシコ、カイ科                                                            |                                                                                                         | Maldanidae                                                                                                                                                                                                                                             | 107      |         |                                     |                           | 3. 73   |                         |                                                     |                              |
| 66                                                                                                       |       |         |             | 1                                                                    | -                                                                                                       | Clymenella sp.                                                                                                                                                                                                                                         |          | 40      |                                     |                           |         | 1.07                    |                                                     |                              |
| 67<br>68                                                                                                 |       | +       |             | +                                                                    | オロチタケフシゴカイ                                                                                              | Praxillella sp.  Axiothella rubrocincta                                                                                                                                                                                                                | -        | 87      | -                                   | 40                        |         | 3. 27                   |                                                     | 0.53                         |
| 69                                                                                                       |       | 1       |             | +                                                                    | ~ - / / / / - / 4/1                                                                                     | Axiothella rubrocincta  Axiothella sp.                                                                                                                                                                                                                 |          |         | 80                                  | 40                        |         |                         | 0. 53                                               | 0.00                         |
| 70                                                                                                       |       |         |             |                                                                      | クツガタタケフシゴカイ                                                                                             | Asychis disparidentata                                                                                                                                                                                                                                 |          | 13      | 13                                  |                           |         | 2. 67                   | 1. 73                                               |                              |
| 71                                                                                                       |       |         | オフェリアコ゛カイ目  | オフェリアコ゛カイ科                                                           | ツツオオフェリア                                                                                                | Armandia lanceolata                                                                                                                                                                                                                                    |          |         |                                     |                           |         |                         |                                                     |                              |
|                                                                                                          |       |         | すシハ゛コ゛カイ目   | サシハ゛コ゛カイ科                                                            |                                                                                                         | Phyllodocidae                                                                                                                                                                                                                                          | 7        |         |                                     |                           | 0.07    |                         |                                                     |                              |
| 72                                                                                                       |       |         | 1           |                                                                      | days Salas - 8                                                                                          | Anaitides sp.                                                                                                                                                                                                                                          |          |         | 100                                 | 40                        |         |                         | 0.13                                                | +                            |
| 72<br>73                                                                                                 |       |         |             |                                                                      | ホソミサシバ                                                                                                  | Eteone longa                                                                                                                                                                                                                                           | 1        | I       |                                     | 1                         | 1       | I                       |                                                     |                              |
| 72<br>73<br>74                                                                                           |       |         |             |                                                                      | 4.5 4.7 4.                                                                                              | Etaona en                                                                                                                                                                                                                                              |          |         | 7                                   | 19                        |         |                         |                                                     | 0.03                         |
| 72<br>73<br>74<br>75                                                                                     |       |         |             |                                                                      |                                                                                                         | Eteone sp.  Eumida sanguinea                                                                                                                                                                                                                           |          |         | 7                                   | 13                        |         |                         | +                                                   | 0.07                         |
| 72<br>73<br>74                                                                                           |       |         |             | ウロコムシ科                                                               | マダラサシバ<br>フサツキウロコムシ亜科                                                                                   | Eteone sp.  Eumida sanguinea  Lepidonotus sp.                                                                                                                                                                                                          |          |         | 7                                   | 13                        |         |                         |                                                     | 0.07                         |
| 72<br>73<br>74<br>75<br>76<br>77<br>78                                                                   |       |         |             | ウロコムシ科                                                               | マダラサシバ                                                                                                  | Eumida sanguinea Lepidonotus sp. Harmothoinae                                                                                                                                                                                                          |          |         | 7                                   | 13                        |         |                         | +                                                   | +                            |
| 72<br>73<br>74<br>75<br>76<br>77<br>78<br>79                                                             |       |         |             |                                                                      | マダラサシバ<br>フサツキウロコムシ亜科                                                                                   | Eumida sanguinea Lepidonotus sp. Harmothoinae Harmothoe sp.                                                                                                                                                                                            |          |         | 7                                   | 7                         |         |                         | 0. 20                                               | +                            |
| 72<br>73<br>74<br>75<br>76<br>77<br>78<br>79<br>80                                                       |       |         |             | ノラリウロコムシ科                                                            | マダラサシバ<br>フサツキウロコムシ亜科                                                                                   | Eumida sanguinea Lepidonotus sp. Harmothoinae Harmothoe sp. Sthenelais sp.                                                                                                                                                                             |          |         | 7<br>7<br>27                        |                           |         |                         | +<br>0. 20<br>0. 07                                 |                              |
| 72<br>73<br>74<br>75<br>76<br>77<br>78<br>79<br>80<br>81                                                 |       |         |             | ノラリウロコムシ科<br>タンチ、クコ、カイ科                                              | マダラサシバ<br>フサツキウロコムシ亜科                                                                                   | Eumida sanguinea Lepidonotus sp. Harmothoinae Harmothoe sp. Sthenelais sp. Bhawania sp.                                                                                                                                                                |          |         | 7                                   | 7                         |         |                         | 0. 20                                               | +                            |
| 72<br>73<br>74<br>75<br>76<br>77<br>78<br>79<br>80<br>81<br>82                                           |       |         |             | ノラリウロコムシ科                                                            | マダラサシバ<br>フサツキウロコムシ亜科                                                                                   | Eumida sanguinea Lepidonotus sp. Harmothoinae Harmothoe sp. Sthenelais sp. Bhawania sp. Micropodarke sp.                                                                                                                                               |          |         | 7<br>7<br>27<br>7                   | 7 20                      |         |                         | +<br>0. 20<br>0. 07<br>+                            | + 0.13                       |
| 72<br>73<br>74<br>75<br>76<br>77<br>78<br>79<br>80<br>81                                                 |       |         |             | ノラリウロコムシ科<br>タンチ、クコ、カイ科                                              | マダラサシバ<br>フサツキウロコムシ亜科                                                                                   | Eumida sanguinea Lepidonotus sp. Harmothoinae Harmothoe sp. Sthenelais sp. Bhawania sp.                                                                                                                                                                |          |         | 7<br>7<br>27                        | 7                         |         |                         | +<br>0. 20<br>0. 07                                 | + 0.13                       |
| 72<br>73<br>74<br>75<br>76<br>77<br>78<br>79<br>80<br>81<br>82<br>83                                     |       |         |             | ノラリウロコムシ科<br>タンチ、クコ、カイ科                                              | マダラサシバ<br>フサツキウロコムシ亜科                                                                                   | Eumida sanguinea Lepidonotus sp. Harmothoinae Harmothoe sp. Sthenelais sp. Bhawania sp. Micropodarke sp. Gyptis sp.                                                                                                                                    |          |         | 7<br>7<br>27<br>7                   | 7 20 20                   |         |                         | +<br>0. 20<br>0. 07<br>+                            | 0.1                          |
| 72 73 74 75 76 77 78 80 81 82 83 84 85 86                                                                |       |         |             | フラリウロコムジ科<br>タンサ"クコ"カイ科<br>オトヒメコ"カイ科<br>カキ"コ"カイ科                     | マグラサシバ<br>フサツキウロコムシ亜科<br>マグラウロコムシ亜科                                                                     | Eumida sanguinea Lepidonotus sp. Harmothoinae Harmothoe sp. Sthenelais sp. Bhawania sp. Micropodarke sp. Gyptis sp. Ophiodromus sp. Cabira pilargiformis japonica Sigambra phuketensis                                                                 | 7        |         | 7<br>27<br>7<br>7<br>13             | 7 20 20                   | +       |                         | +<br>0. 20<br>0. 07<br>+<br>+<br>0. 07              | 0. 1:                        |
| 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87                                                             |       |         |             | ノラリウロコムン科<br>タンザ・クコ * カイ科<br>オトヒメコ * カイ科                             | マグラサシバ<br>フサツキウロコムシ亜科<br>マグラウロコムシ亜科<br>マグラウロコムシ亜科<br>ニホンカギゴカイ<br>クシカギゴカイ                                | Emnida sanguinea Lepidonotus sp. Harmothoinae Harmothoe sp. Sthenelais sp. Bhawania sp. Micropodarke sp. Gyptis sp. Ophiodromus sp. Cabira pilargiformis japonica Sigambra phuketensis Nereiridae                                                      |          |         | 7<br>27<br>7<br>7<br>13             | 7<br>20<br>20<br>7        |         | 0.07                    | +<br>0. 20<br>0. 07<br>+<br>+<br>0. 07<br>0. 07     | 0.11                         |
| 72<br>73<br>74<br>75<br>76<br>77<br>78<br>79<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>88       |       |         |             | フラリウロコムジ科<br>タンサ"クコ"カイ科<br>オトヒメコ"カイ科<br>カキ"コ"カイ科                     | マグラサシバ<br>フサツキウロコムシ亜科<br>マグラウロコムシ亜科<br>マグラウロコムシ亜科<br>ニホンカギゴカイ<br>クシカギゴカイ<br>コケゴカイ                       | Eumida sanguinea Lepidonotus sp. Harmothoinae Harmothoe sp. Sthenelais sp. Bhawania sp. Micropodarke sp. Gyptis sp. Ophiodromus sp. Cabira pilargiformis japonica Sigambra phuketensis Nereiridae Ceratonereis erythraeensis                           | 7        |         | 7<br>27<br>7<br>7<br>13<br>13<br>33 | 20<br>20<br>7<br>100      | +       | 0. 07                   | +<br>0. 20<br>0. 07<br>+<br>+<br>0. 07<br>0. 07     | +<br>0.1<br>0.0<br>+<br>0.2  |
| 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89                                                       |       |         |             | フラリウロコムジ科<br>タンサ"クコ"カイ科<br>オトヒメコ"カイ科<br>カキ"コ"カイ科                     | マグラサシバ<br>フサツキウロコムシ亜科<br>マグラウロコムシ亜科<br>ニホンカギゴカイ<br>クシカギゴカイ<br>コケゴカイ<br>ツルヒゲゴカイ                          | Eumida sanguinea Lepidonotus sp. Harmothoinae Harmothoe sp. Sthenelais sp. Bhawania sp. Micropodarke sp. Gyptis sp. Ophiodromus sp. Cabira pilargiformis japonica Sigambra phuketensis Nereiridae Ceratonereis erythraeensis Playmereis bicanaliculata |          |         | 7<br>27<br>7<br>7<br>13             | 7<br>20<br>20<br>7        |         | 0.07                    | +<br>0. 20<br>0. 07<br>+<br>+<br>0. 07<br>0. 07     | 0.11                         |
| 72<br>73<br>74<br>75<br>76<br>77<br>78<br>79<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>89 |       |         |             | / ラリウココムン科<br>タッチ "フェ" か/ 科<br>オトピメコ" カ (科<br>カキ" コ" カ (科<br>コ" カ (科 | マグラサシバ<br>フサツキウロコムシ亜科<br>マグラウロコムシ亜科<br>マグラウロコムシ亜科<br>ニホンカギゴカイ<br>クシカギゴカイ<br>コケゴカイ                       | Emmida sanguinea Lepidonotus sp. Harmothoinae Harmothoe sp. Sthenelais sp. Bhawania sp. Micropodarke sp. Gyptis sp. Ophiodromus sp. Cabira pilargiformis japonica Sigambra phuketensis Nereiridae Ceratonereis erythraeensis                           | 7        | 13      | 7<br>27<br>7<br>7<br>13<br>13<br>33 | 7<br>20<br>20<br>7<br>100 | 0.87    |                         | +<br>0. 20<br>0. 07<br>+<br>0. 07<br>0. 07<br>0. 07 | 0. 13<br>0. 03<br>+<br>0. 20 |
| 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89                                                       |       |         |             | フラリウロコムジ科<br>タンサ"クコ"カイ科<br>オトヒメコ"カイ科<br>カキ"コ"カイ科                     | マグラサシバ<br>フサツキウロコムシ亜科<br>マグラウロコムシ亜科<br>マグラウロコムシ亜科<br>ニホンカギゴカイ<br>クシカギゴカイ<br>コケゴカイ<br>スナイソゴカイ<br>スナイソゴカイ | Eumida sanguinea Lepidonotus sp. Harmothoinae Harmothoe sp. Sthenelais sp. Bhawania sp. Micropodarke sp. Gyptis sp. Ophiodromus sp. Cabira pilargiformis japonica Sigambra phuketensis Nereiridae Ceratonereis erythraeensis Playmereis bicanaliculata |          | 13 20   | 7<br>27<br>7<br>7<br>13<br>13<br>33 | 20<br>20<br>7<br>100      |         | 0. 07<br>2. 47<br>2. 60 | +<br>0. 20<br>0. 07<br>+<br>+<br>0. 07<br>0. 07     | 0. 13<br>0. 03<br>+<br>0. 20 |

|       |              |                    |              |                         |               | 調査項目                     |          | 個体数(   | 個体/m²)       |             |                                                  | 湿重量     | $(g/m^2)$ |          |
|-------|--------------|--------------------|--------------|-------------------------|---------------|--------------------------|----------|--------|--------------|-------------|--------------------------------------------------|---------|-----------|----------|
|       | 種 名          |                    |              |                         |               |                          | H24. 5   | H24. 8 |              | H25. 1      | H24. 5                                           | H24. 8  | H24. 11   | H25. 1   |
| 94    |              |                    |              |                         |               | Glycera sp.              | 13       | 7      |              |             | 0, 67                                            | 0, 07   |           |          |
| 95    |              |                    |              | ニカイチロリ科                 | ヤマトキョウスチロリ    | Goniada japonica         |          |        |              |             |                                                  |         |           |          |
| 96    |              |                    |              | シロカ゛ネコ゛カイ科              | ミナミシロガネゴカイ    | Nephtys polybranchia     | 27       | 20     | 7            | 33          | 0. 20                                            | 0. 33   | +         | 0.13     |
| 97    |              |                    | イソメ目         | イソメ科                    | ホソナガエラムシ      | Marphysa depressa        |          |        |              |             |                                                  |         |           |          |
| 98    |              |                    | 177 H        | 12731                   | / / / - / - / | Marphysa sp.             | 7        |        |              | 7           | +                                                |         |           | 1.20     |
| 99    |              |                    |              |                         |               | Eunice sp.               | <u>'</u> |        | 20           | 27          | <u> </u>                                         |         | 0, 20     | _        |
| 100   |              |                    |              | キ゛ボシイソメ科                |               | Lumbrineris sp.          |          |        | 20           | 21          |                                                  |         | 0.20      | 0.0      |
| 101   |              |                    |              | す か タイノメイヤ              | カタマガリギボシイソメ   | Scoletoma longifolia     | 87       | 33     | 400          | 253         | 0.60                                             | 0. 47   | 0. 67     | 0, 8     |
| 102   |              |                    |              | ノリコイソメ科                 | カラマカリモホンインス   |                          | 01       | 33     | 7            | 200         | 0. 60                                            | 0.47    | +         | 0.0      |
| 102   |              |                    | ダールマコーカイ目    | グリコイブプルヤ<br>ダ ルマコ * カイ科 | ダルマゴカイ        | Schistomeringos sp.      |          |        | - 1          |             |                                                  |         | +         |          |
| -     |              |                    | A 1/43 1/4 E |                         | タルマコカイ        | Sternaspis scutata       | _        |        |              |             |                                                  | -       | <b>.</b>  |          |
| 104   |              |                    |              | ハボウキゴカイ科                |               | Brada sp.                | 7        |        | 33           |             | 0. 27                                            |         | 0.47      |          |
| 105   |              |                    | フサゴカイ目       | ウミイサゴムシ科                |               | Pectinaria sp.           |          |        | 13           | 13          |                                                  |         | 0.07      |          |
| 106   |              |                    |              | フサコ゛カイ科                 |               | Streblosoma sp.          |          | 13     | 27           | 7           |                                                  | 1.13    | 1. 20     |          |
| 107   |              |                    |              |                         |               | Amphitrite sp.           |          |        |              | 7           |                                                  |         |           | 1.40     |
| 108   |              |                    | ケヤリムシ目       | ケヤリムシ科                  |               | Sabellidae               |          | 7      |              |             |                                                  | 0.40    |           |          |
| 109   |              |                    |              |                         |               | Chone sp.                |          | 40     | 127          | 113         |                                                  | 0.47    | 0.60      | 0.2      |
| 110   |              |                    |              |                         | ヒガタケヤリムシ      | Laonome albicingillum    | 213      |        | 7            |             | 1.73                                             |         | 0.33      |          |
| 111   |              |                    |              | カンサ゛シコ゛カイ科              | エゾカサネカンザシ     | Hydroides ezoensis       |          |        |              |             |                                                  |         |           |          |
| 112   |              |                    |              |                         | ヤッコカンザシ       | Pomatoleios kraussii     |          |        |              |             |                                                  |         |           |          |
| 113   | 星口動物門        | スジホシムシ綱            | スシ゛ホシムシ目     | フクロおシムシ科                |               | Golfingiidae             |          | 7      |              |             |                                                  | 0.80    |           |          |
| 114   |              |                    |              |                         | クロホシムシ        | Thysanocardia nigra      |          |        |              | 7           |                                                  |         |           | 0, 0     |
| 115   |              |                    |              | マキカ゛イホシムシ科              | ,             | Phascolionidae           |          | 7      |              |             |                                                  | 0.13    |           |          |
| 116   | 節足動物門        | 甲殼綱                | ミオト* コーハ* 目  | ウミホタル科                  | ウミボタル         | Vargula hilgendorfii     |          | 13     | 53           | 20          |                                                  | 0.10    | 0, 07     | 0,0      |
| 117   | MINE MOTOR I | -1 - AX/999        | MI TO D      | Asteropidae             | 2 (4177)      | Asteropinae              |          | 10     | - 00         | 7           |                                                  |         | 0.01      | +        |
| 118   |              |                    | フシ゛ツボ 目      | 75°94°科                 | シロスジフジツボ      | Balanus albicostatus     |          |        |              | - '         |                                                  |         |           | <u> </u> |
| 119   |              |                    | 77 74 H      | 72 70 AT                | アメリカフジツボ      |                          |          |        |              |             |                                                  |         |           |          |
| 120   |              |                    | 2 ) D        | 93.24                   | / メリカノシラホ     | Balanus eburneus         |          |        |              |             |                                                  |         |           |          |
|       |              |                    | アミ目          | バ科                      | - 1 - 1 16.1  | Mysidae                  |          |        |              |             |                                                  |         |           |          |
| 121   |              |                    | クーマ目         | tギサクーマ科                 | ミナミナギサクーマ     | Bodotria similis         |          |        | 13           | _           |                                                  |         | +         |          |
| 122   |              |                    |              |                         | ハリダシクーマ属      | Eocuma sp.               |          |        |              | 7           |                                                  |         |           | 0.0      |
| 123   |              |                    |              | クーマ科                    | クーマ属          | Diastylis sp.            |          |        |              |             |                                                  |         |           |          |
| 124   |              |                    | タナイス目        | タナイス科                   | ゼウクソ属         | Zeuxo sp.                |          |        | 7            |             |                                                  |         | +         |          |
| 125   |              |                    | ワラシ ムシ目      | スナウミナナフシ科               | ムロミスナウミナナフシ   | Cyathura muromiensis     |          |        | 7            |             |                                                  |         | +         |          |
| 126   |              |                    |              | トガリヘラムシ科                | ヤリボヘラムシ       | Symmius caudatus         |          |        | 7            |             |                                                  |         | 0.13      |          |
| 127   |              |                    |              | コヴフ゛ムシ科                 | イソコツブムシ属      | Gnorimosphaeroma sp.     |          |        |              |             |                                                  |         |           |          |
| 128   |              |                    | 3JILE 目      | ユンポソコエピ科                | ニホンドロソコエビ     | Grandidierella japonica  |          |        |              | 27          |                                                  |         |           | 0.0      |
| 129   |              |                    |              |                         | ユンボソコエビ属      | Aoroides sp.             |          |        |              | 40          |                                                  |         |           | +        |
| 130   |              |                    |              | ドロクダムシ科                 |               | Corophiidae              |          |        |              |             |                                                  |         |           |          |
| 131   |              |                    |              | イシクヨコエビ科                | クダオソコエビ       | Photis longicaudata      |          |        | 20           |             |                                                  |         | +         |          |
| 132   |              |                    |              |                         | クダオソコエビ属      | Photis sp.               |          |        |              | 167         |                                                  |         |           | 0.0      |
| 133   |              |                    |              | メリタヨコエヒ*科               |               | Melitidae                |          |        | 7            |             |                                                  |         | +         |          |
| 134   |              |                    |              | マルハサミヨコエヒ・科             | マルハサミヨコエビ属    | Leucothoe sp.            |          |        |              | 7           |                                                  |         |           | +        |
| 135   |              |                    |              | フトヒケ* ソコエヒ* 科           |               | Lysianassidae            |          |        |              | 7           |                                                  |         |           | +        |
| 136   |              |                    |              | スカ・メソコエヒ・科              | コプスガメ         | Ampelisca bocki          |          | 93     | 80           | 53          |                                                  | 0. 27   | 0. 27     | 0.8      |
| 137   |              |                    |              | 7/22 9 15               | クビナガスガメ       | Ampelisca brevicornis    |          | - 55   | 1 30         | 40          |                                                  | 0.21    | 0.21      | 0. 2     |
| 138   |              |                    |              |                         | ニッポンスガメ       | Byblis japonicus         |          | 20     | 27           | 40          | <del>                                     </del> | 0, 07   | 0.07      |          |
| 139   |              |                    | It' 🗏        | スナモク゛リ科                 | ニホンスナモグリ      | Callianassa japonica     |          | 20     |              | <del></del> | <del>                                     </del> | 0.07    | 0.07      | _        |
| 140   |              | -                  | H            | スプモグ リ本社                | ヘリトリコブシ       |                          | 7        | -      |              | -           | 1. 40                                            |         |           | -        |
| 141   |              |                    | -            | コノンカニキャ<br>リタリカ*ニ科      | イシガニ          | Philyra heterograna      | 1 7      |        |              | -           | 1. 40                                            |         |           | -        |
|       |              |                    | -            |                         |               | Charybdis japonica       |          |        | <del>-</del> |             | -                                                | -       |           | _        |
| 142   |              |                    |              | ムツアシカ゛ニ科                | ヒメムツアシガニ      | Hexapus anfractus        |          |        | 7            |             | <u> </u>                                         |         | 1. 40     | 1        |
| 143   |              |                    | -            | オサカ・ニ科                  | ヤマトオサガニ       | Macrophthalmus japonicus |          |        |              | <b>—</b>    | -                                                |         |           | -        |
| 144   |              |                    |              | モクス、カ、二科                | タカノケフサイソガニ    | Hemigrapsus takanoi      |          |        |              |             | ļ                                                |         |           |          |
| 145   | 触手動物門        | 箒虫綱                | 箒虫目          | ホウキムシ科                  |               | Phoronis sp.             |          |        | 140          | 253         |                                                  |         | 0. 20     |          |
| 146   | 棘皮動物門        | thr <sup>*</sup> 綱 | モミシ゛カ゛イ目     | モミシ゛カ゛イ科                | モミジガイ         | Astropecten scoparius    | 7        |        | 7            | 13          | 28. 47                                           |         | 3. 53     | 10.1     |
| 147   |              | クモヒトデ綱             | クモヒトテ゛目      | スナクモヒトデ科                |               | Amphiuridae              |          | 7      |              |             |                                                  | 0. 20   |           |          |
| 148   |              |                    |              |                         | メガネクモヒトデ      | Amphiura aestuarii       | 153      | 47     | 53           | 47          | 9.00                                             | 3. 07   | 1. 53     | 0.9      |
| 149   |              |                    |              |                         | カキクモヒトデ       | Ophiophragmus japonicus  |          |        | 40           | 20          |                                                  |         | 0.40      | 0.4      |
| 150   |              | ウニ網                | ホンウニ 目       | サンショウウニ科                |               | Temnopleuridae           |          |        | 7            |             |                                                  |         | +         |          |
| 計-    |              |                    |              |                         | 種数            |                          | 30       | 32     | 63           | 60          | 30                                               | 32      | 63        | 60       |
| 76.1. |              |                    |              | Ave AL-167              | または湿重量        |                          | 2, 049   | 2,236  | 5, 170       | 4,984       | 254. 95                                          | 808. 98 | 584. 28   | 398, 51  |

注)空欄は出現しなかったことを、湿重量の+表示は0.01g/m²未満を示す。